Log in

Recycled Pb/C-catalyzed one-pot synthesis of 1-carbonyl-1H-indoles from 2-iodoanilines and calcium carbide

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A series of 1-carbonyl-1H-indoles were prepared by 2-iodoanilines and calcium carbide in a one-pot reaction catalyzed by recyclable10% Pb/C, resulting in the corresponding substituted indoles in good yields. This protocol offers several advantages, including the utilization of sustainable, low-cost calcium carbide, an easy-to-handle acetylene source, and recyclable Pb/C catalysts.

Graphic abstract

The synthesis of a series of 1-carbonyl-1H-indoles were prepared by 2-iodoanilines and calcium carbide in a one-pot reaction catalyzed by 10% Pb/C, resulting in the corresponding substituted indoles in good yields. This protocol offers several advantages, including the utilization of sustainable, low-cost feedstock, an easy-to-handle acetylene source, and recyclable Pb/C catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Humphrey G R and Kuethe J T 2006 Practical methodologies for the synthesis of indoles Chem. Rev. 106 2875

    Article  CAS  PubMed  Google Scholar 

  2. Fischer E and Jourdan F 1883 Ueber die hydrazine der brenztraubensäure Ber. Dtsch. Chem. Ges. 16 2241

    Article  Google Scholar 

  3. Fischer E and Hess O 1884 Synthesis of indole-derivatives Ber. Dtsch. Chem. Ges. 17 559

    Article  Google Scholar 

  4. Chen C Y, Senanayake C H, Bill T J, Larsen R D, Verhoeven T R and Reider P J 1994 Improved Fischer indole reaction for the preparation of N, N-Dimethyltryptamines: synthesis of L-695,894, a potent 5-HT1D receptor agonist J. Org. Chem. 59 3738

    Article  CAS  Google Scholar 

  5. Haag B A, Zhang Z G, Li J S and Knochel P 2010 Fischer-Indolsynthese mit Organozinkreagentien Angew. Chem. 122 9703

    Article  Google Scholar 

  6. Mller S, Webber M J and List B 2011 The catalytic asymmetric Fischer indolization J. Am. Chem. Soc. 133 18534

    Article  Google Scholar 

  7. Inman M, Carbone A and Moody C J 2012 Two-step route to indoles and analogues from haloarenes: a variation on the Fischer indole synthesis J. Org. Chem. 77 1217

    Article  CAS  PubMed  Google Scholar 

  8. Kuznetsov A, Makarov A, Rubtsov A E, Butin A V and Gevorgyan V 2013 Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans J. Org. Chem. 78 12144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeni G and Larock R C 2004 Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry Chem. Rev. 104 2285

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura I and Yamamoto Y 2004 Transition-metal-catalyzed reactions in heterocyclic synthesis Chem. Rev. 104 2127

    Article  CAS  PubMed  Google Scholar 

  11. Cacchi S and Fabrizi G 2005 Synthesis and functionalization of indoles through palladium-catalyzed reactions Chem. Rev. 105 2873

    Article  CAS  PubMed  Google Scholar 

  12. Zeni G and Larock R C 2006 Synthesis of heterocycles via palladium-catalyzed oxidative addition Chem. Rev. 106 4644

    Article  CAS  PubMed  Google Scholar 

  13. Jia Y and Zhu J 2006 Palladium-catalyzed, modular synthesis of highly functionalized indoles and tryptophans by direct annulation of substituted o-haloanilines and aldehydes J. Org. Chem. 71 7826

    Article  CAS  PubMed  Google Scholar 

  14. McLaughlin M, Palucki M and Davies I W 2006 Efficient access to azaindoles and indoles Org. Lett. 8 3307

    Article  CAS  PubMed  Google Scholar 

  15. Trost B M and McClory A 2007 Rhodium-catalyzed cycloisomerization: formation of indoles, benzofurans, and enol lactones Angew. Chem. Int. Ed. 46 2074

    Article  CAS  Google Scholar 

  16. Fang Y Q, Karisch R and Lautens M 2007 Efficient syntheses of KDR kinase inhibitors using a Pd-catalyzed tandem C-N/suzuki coupling as the key step J. Org. Chem. 72 1341

    Article  CAS  PubMed  Google Scholar 

  17. Nagamochi M, Fang Y Q and Lautens M 2007 A general and practical method of alkynyl indole and benzofuran synthesis via tandem Cu-and Pd-catalyzed cross-couplings Org. Lett. 9 2955

    Article  CAS  PubMed  Google Scholar 

  18. Ackermann L and Althammer A 2007 Domino N-H/C-H bond activation: Palladium-catalyzed synthesis of annulated heterocycles using dichloro(hetero)arenes Angew. Chem. Int. Ed. 46 1627

    Article  CAS  Google Scholar 

  19. Jensen T, Pedersen H, Bang-Andersen B, Madsen R and Jørgensen M 2008 Palladium-catalyzed aryl amination-heck cyclization cascade: a one-flask approach to 3-substituted indoles Angew. Chem. Int. Ed. 47 888

    Article  CAS  Google Scholar 

  20. Hodgkinson R C, Schulz J and Willis M C 2009 Tandem copper-catalysed aryl and alkenyl amination reactions: the synthesis of N-functionalised indoles Org. Biomol. Chem. 7 432

    Article  CAS  PubMed  Google Scholar 

  21. Baxter C A, Cleator E, Alam M, Davies A J, Goodyear A and O’Hagan M 2010 A novel approach to 3-methylindoles by a heck/cyclization/isomerization process Org. Lett. 12 668

    Article  CAS  PubMed  Google Scholar 

  22. Lee W, Jung J W, Sim J, An H C and Suh Y G 2013 Microwave-assisted synthesis of 3-substituted indoles via intramolecular arene–alkene coupling of o-iodoanilino enamines Tetrahedron 69 7211

    Article  CAS  Google Scholar 

  23. Gati W, Couty F, Boubaker T, Rammah M M, Rammah M B and Evano G 2013 Intramolecular carbocupration of N-aryl-ynamides: a modular indole synthesis Org. Lett. 15 3122

    Article  CAS  PubMed  Google Scholar 

  24. Hovey M T, Check C T, Sipher A F and Scheidt K A 2014 N-heterocyclic-carbene-catalyzed synthesis of 2-aryl indoles Angew. Chem. Int. Ed. 53 9603

    Article  CAS  Google Scholar 

  25. Thirupathi N, Kumar Y K, Kant R and Reddya M S 2014 Selective 5-exo-dig cyclization of in situ synthesized N-Boc-2-aminophenyl ethoxyethynyl carbenols: Synthesis of multifunctional indoles and their derivatives Adv. Synth. Catal. 356 1823

    Article  CAS  Google Scholar 

  26. Ma N, Li P, Wang Z, Dai Q P and Hu C W 2018 Synthesis of indoles from aroyloxycarbamates with alkynes via decarboxylation/cyclization Org. Biomol. Chem. 16 2421

    Article  CAS  PubMed  Google Scholar 

  27. Hedouin J, Carpentier V, Renard R M Q, Schneider C, Gillaizeau I and Hoarau C 2019 Regioselective Pd-catalyzed carbopalladation/decarboxylative allylic alkynylation of ortho-iodoallenamides with alkynyl carboxylic acids J. Org. Chem. 84 10535

    Article  CAS  PubMed  Google Scholar 

  28. Bera N, Lenka B S, Bishi S, Samanta S and Sarkar D 2022 Gold (I)-catalyzed synthesis of heterocycles via allene oxide from propargylic alcohols J. Org. Chem. 87 9729

    Article  CAS  PubMed  Google Scholar 

  29. Bandini M 2011 Gold-catalyzed decorations of arenes and heteroarenes with C-C multiple bonds Chem. Soc. Rev. 40 1358

    Article  CAS  PubMed  Google Scholar 

  30. Cho S H, Kim J Y, Kwak J and Chang S 2011 Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C–C and C–N bond formation Chem. Soc. Rev. 40 5068

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto Y 2014 Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes Chem. Soc. Rev. 43 1575

    Article  CAS  PubMed  Google Scholar 

  32. Fang G and Bi X 2015 Silver-catalysed reactions of alkynes: recent advances Chem. Soc. Rev. 44 8124

    Article  CAS  PubMed  Google Scholar 

  33. Boyarskiy V P, Ryabukhin D S, Bokach N A and Vasilyev A V 2016 Alkenylation of arenes and heteroarenes with alkynes Chem. Rev. 116 5894

    Article  CAS  PubMed  Google Scholar 

  34. Larock R C, Yum E K and Refvik M D 1991 Synthesis of indoles via palladium-catalyzed heteroannulation of internal alkynes J. Am. Chem. Soc. 113 6689

    Article  CAS  Google Scholar 

  35. Larock R C, Yum E K and Refvik M D 1998 Synthesis of 2, 3-disubstituted indoles via palladium-catalyzed annulation of internal alkynes J. Org. Chem. 63 7652

    Article  CAS  Google Scholar 

  36. Phetrak N, Rukkijakan T, Sirijaraensre J, Prabpai S, Kongsaeree C and Chuawong P 2013 Regioselectivity of larock heteroannulation: a contribution from electronic properties of diarylacetylenes J. Org. Chem. 78 12703

    Article  CAS  PubMed  Google Scholar 

  37. Pan X and Bannister T D 2014 Sequential Sonagashira and Larock indole synthesis reactions in a general strategy to prepare biologically active β-carboline-containing alkaloids Org. Lett. 16 6124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sakai N, Annaka K, Fujita A, Sato A and Konakahara T 2008 InBr3-Promoted Divergent Approach to Polysubstituted Indoles and Quinolines from 2-Ethynylanilines: Switch from an Intramolecular Cyclization to an Intermolecular Dimerization by a Type of Terminal Substituent Group J. Org. Chem. 73 4160

    Article  CAS  PubMed  Google Scholar 

  39. Cacchi S and Fabrizi G 2011 Update 1 of: Synthesis and Functionalization of Indoles Through Palladium-Catalyzed Reactions Chem. Rev. 111 PR215

    Article  PubMed  Google Scholar 

  40. Herrero M T, de Sarralde J D, SanMartin R, Bravo L and Domínguez E 2012 Cesium Carbonate-Promoted Hydroamidation of Alkynes: Enamides, Indoles and the Effect of Iron (III) Chloride Adv. Synth. Catal. 354 3054

    Article  CAS  Google Scholar 

  41. Abbiati G, Marinelli F, Rossi E and Arcadi A 2013 Synthesis of Indole Derivatives from 2-Alkynylanilines by Means of Gold Catalysis Isr. J. Chem. 53 856

    Article  CAS  Google Scholar 

  42. Huang L, Arndt M, Gooßen K, Heydt H and Gooßen L J 2015 Late transition metal-catalyzed hydroamination and hydroamidation Chem. Rev. 115 2596

    Article  CAS  PubMed  Google Scholar 

  43. Li YL, Li J, Ma A L, Huang Y N and Deng J 2015 Metal-free synthesis of indole via NIS-mediated cascade C-N bond formation/aromatization J. Org. Chem. 80 3841

    Article  CAS  PubMed  Google Scholar 

  44. Mizukami A, Ise Y, Kimachi T and Inamoto K 2016 Rhodium-catalyzed cyclization of 2-ethynylanilines in the presence of isocyanates: approach toward indole-3-carboxamides Org. Lett. 18 748

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe T, Mutoh Y and Saito S 2017 Ruthenium-catalyzed cycloisomerization of 2-alkynylanilides: synthesis of 3-substituted indoles by 1, 2-carbon migration J. Am. Chem. Soc. 139 7749

    Article  CAS  PubMed  Google Scholar 

  46. Dai Q, Li P, Ma N and Hu C 2016 Palladium-catalyzed decarboxylative synthesis of arylamines Org. Lett. 18 5560

    Article  CAS  PubMed  Google Scholar 

  47. Li P, Ma N, Li J, Wang Z, Dai Q and Hu C 2017 Regioselective synthesis of 2-vinylanilines using O-aroyloxycarba-mates by sequential decarboxylation/amination/heck reaction J. Org. Chem. 82 8251

    Article  CAS  PubMed  Google Scholar 

  48. Yang Q, Jiang Y and Kuang C 2012 Facile one-pot synthesis of monosubstituted 1-aryl-1H-1,2,3-triazoles from arylboronic acids and Prop-2-ynoic acid (=propiolic acid) or calcium acetylide (=calcium carbide) as acetylene source Helv. Chim. Acta. 95 448

    Article  CAS  Google Scholar 

  49. Lin Z, Yu D, Sum Y N and Zhang Y 2012 Synthesis of functional acetylene derivatives from calcium carbide ChemSusChem 5 625

    Article  CAS  PubMed  Google Scholar 

  50. Sum Y N, Yu D and Zhang Y 2013 Synthesis of acetylenic alcohols with calcium carbide as the acetylene source Green Chem. 15 2718

    Article  CAS  Google Scholar 

  51. Thavornsin N, Sukwattanasinitt M and Wacharasindhu S 2014 Direct synthesis of poly (p-phenyleneethynylene) s from calcium carbide Polym. Chem. 5 48

    Article  CAS  Google Scholar 

  52. Hosseini A, Seidel D, Miska A and Schreiner P R 2015 Fluoride-assisted activation of calcium carbide: a simple method for the ethynylation of aldehydes and ketones Org. Lett. 17 2808

    Article  CAS  PubMed  Google Scholar 

  53. Kaewchangwat N, Sukato R, Vchirawongkwin V, Vilaivan T, Sukwattanasinitt M and Wacharasindhu S 2015 Direct synthesis of aryl substituted pyrroles from calcium carbide: An underestimated chemical feedstock Green Chem. 17 460

    Article  CAS  Google Scholar 

  54. Rodygin K S and Ananikov V P 2016 An efficient metal-free pathway to vinyl thioesters with calcium carbide as the acetylene source Green Chem. 18 482

    Article  CAS  Google Scholar 

  55. Matake R, Adachi Y and Matsubara H 2016 Synthesis of vinyl ethers of alcohols using calcium carbide under superbasic catalytic conditions (KOH/DMSO) Green Chem. 18 2614

    Article  CAS  Google Scholar 

  56. Teong S P, Yu D, Sum Y N and Zhang Y 2016 Copper catalysed alkynylation of tertiary amines with CaC2 via sp3 C-H activation Green Chem. 18 3499

    Article  CAS  Google Scholar 

  57. Teong S P, Chua A Y H, Deng S, Li X and Zhang Y 2017 Direct vinylation of natural alcohols and derivatives with calcium carbide Green Chem. 19 1659

    Article  CAS  Google Scholar 

  58. Rodygin K S, Werner I and Ananikov V P 2017 A green and sustainable route to carbohydrate vinyl ethers for accessing bioinspired materials with a unique microspherical morphology ChemSusChem 11 292

    Article  PubMed  Google Scholar 

  59. Werner G, Rodygin K S, Kostin A A, Gordeev E G, Kashin A S and Ananikov V P 2017 A solid acetylene reagent with enhanced reactivity: fluoride-mediated functionalization of alcohols and phenols Green Chem. 19 3032

    Article  CAS  Google Scholar 

  60. Turberg M, ArdilaFierro K J, Bolm C and Hernandez J G 2018 Altering copper-catalyzed A3 couplings by mechanochemistry: one-pot synthesis of 1,4-diamino-2-butynes from aldehydes, amines, and calcium carbide Angew. Chem. Int. Ed. 57 10718

    Article  CAS  Google Scholar 

  61. Fu R and Li Z 2018 Direct synthesis of 2-methylbenzofurans from calcium carbide and salicylaldehyde p-tosylhydrazones Org. Lett. 20 2342

    Article  CAS  PubMed  Google Scholar 

  62. Ledovskaya M S, Rodygin K S and Ananikov V P 2018 Calcium-mediated one-pot preparation of isoxazoles with deuterium incorporation Org. Chem. Front. 5 226

    Article  CAS  Google Scholar 

  63. Hosseini A and Schreiner P R 2019 Synthesis of exclusively 4-substituted β-lactams through the Kinugasa reaction utilizing calcium carbide Org. Lett. 21 3746

    Article  CAS  PubMed  Google Scholar 

  64. Rodygin K S, Vikenteva Y A and Ananikov V P 2019 Calcium-based sustainable chemical technologies for total carbon recycling ChemSusChem 12 1483

    Article  CAS  PubMed  Google Scholar 

  65. Gao L, Liu Z, Ma X and Li Z 2020 Direct synthesis of propen-2-yl sulfones through cascade reactions using calcium carbide as an alkyne source Org. Lett. 22 5246

    Article  CAS  PubMed  Google Scholar 

  66. Lu H and Li Z 2020 Synthesis of 1,2,3-triazolyl-based ketoximes direct using calcium carbide as an acetylene source Eur. J. Org. Chem. 7 845

    Article  Google Scholar 

  67. Rodygin K S, Ledovskaya M S, Voronin V V, Lotsman K A and Ananikov V P 2021 Calcium carbide: versatile synthetic applications, green methodology and sustainability Eur. J. Org. Chem. 2021 43

    Article  CAS  Google Scholar 

  68. Liu Z and Li Z 2021 Synthesis of 1,3-diynes using calcium carbide as an alkyne source Eur. J. Org. Chem. 2021 302

    Article  CAS  Google Scholar 

  69. Metlyaeva S A, Rodygin K S, Lotsman K A, Samoylenko D E and Ananikov V P 2021 Biomass- and calcium carbide-based recyclable polymers Green Chem. 23 2487

    Article  CAS  Google Scholar 

  70. Fu R, Lu Y, Yue G, Wu D, Xu L, Song H, et al. 2021 Direct synthesis of 3-coumaranones with calcium carbide as an acetylene source Org. Lett. 23 3141

    Article  CAS  PubMed  Google Scholar 

  71. Zhao Z C 2023 One-pot synthesis of unsymmetrical 1,3-butadiyne derivatives B. Korean Chem. Soc. 44 865

    Article  CAS  Google Scholar 

  72. Zhao Z C 2023 Direct synthesis of unsymmetrical 1,3-butadiynes from calcium carbide and aryl iodides Russ. J. Org. Chem. 59 1436

    Article  CAS  Google Scholar 

  73. Chen W, Li G R, Wen F, Wang Q and Li Z 2022 Concise construction of 1-sulfonyl-1H-indoles using solid calcium carbide as a surrogate of gaseous acetylene Chemistry Select 8 e202203855 (1 of 5)

  74. Felpin F X, Ayad T and Mitra S 2006 Pd/C: an old catalyst for new applications-its use for the Suzuk-Miyaura reaction Eur. J. Org. Chem. 2679

  75. Ajiki H S, Kurita T, Kozaki A, Zhang G, Kitamura Y, Maegawa T J and Hirota K 2004 Ligand-free Suzuki-Miyaura reaction catalysed by Pd/C at room temperature J. Chem. Res. 593

  76. Kitamura Y, Sako S, Udzu T, Tsutui A, Maegawa T, Monguchi Y and Sajiki H 2007 Ligand-free Pd/C-catalyzed Suzuki-Miyaura coupling reaction for the synthesis of heterobiaryl derivatives Chem. Commun. 47 5069

    Article  Google Scholar 

  77. Mori S, Yanase T, Aoyagi S, Monguchi Y and Maegawa Tand Sajiki H 2008 Ligand-free Sonogashira coupling reactions with heterogeneous Pd/C as the catalyst Chem.-Eur. J. 14 6994

    Article  CAS  PubMed  Google Scholar 

  78. Sajiki S, Ikawa T and Hirota K 2004 Reductive and catalytic monoalkylation of primary amines using nitriles as an alkylating reagent Org. Lett. 6 4977

    Article  CAS  PubMed  Google Scholar 

  79. Monguchi Y, Kitamoto K, Ikawa T, Maegawa T and Sajiki H 2008 Evaluation of aromatic amination catalyzed by Palladium on carbon: a practical synthesis of triarylamines Adv. Synth. Catal. 350 2767

    Article  CAS  Google Scholar 

  80. Monguchi Y, Mori S, Aoyagi S, Tsutsui A, Maegawaa T and Sajiki H 2010 Palladium on carbon-catalyzed synthesis of 2- and 2,3-substituted indoles under heterogeneous conditions Org. Biomol. Chem. 8 3338

    Article  CAS  PubMed  Google Scholar 

  81. Ahmed A, Ghosh M, Sarkar P and Ray J K 2013 ZnCl2 and Pd/C catalyzed synthesis of 2-substituted indoles Tetrahedron Lett. 54 6691

    Article  CAS  Google Scholar 

  82. Prasanna G L, Suresh N, Rao B M V and Pal M 2019 An ultrasound-based approach for the synthesis of indoles under Pd/C catalysis Arab. J. Chem. 12 5370

    Article  Google Scholar 

  83. Havashi T, Kubo A and Ozawa F 1992 Catalytic asymmetric arylation of olefins Pure Appl. Chem. 64 421

    Article  Google Scholar 

  84. Polynski M V, Sapova M D and Ananikov V P 2020 Understanding solubilization of Ca acetylide with a new computational model for ionic pairs Chem. Sci. 11 13102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hosseini A, Pilevar A, Hogan E, Mogwitz B, Schulze A S and Schreiner P R 2017 Calcium carbide catalytically activated with tetran-butyl ammonium fluoride for Sonogashira cross coupling reactions Org. Biomol. Chem. 15 6800

    Article  CAS  PubMed  Google Scholar 

  86. Lu H and Li Z 2019 Palladium-catalyzed one-pot four-component synthesis of βCyano-α, β-unsaturated ketones using calcium carbide as an acetylene source and potassium hexacyanoferrate(II) as an eco-friendly cyanide source Adv. Synth. Catal. 361 4474

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges financial support from Hebei Chemical & Pharmaceutical College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicai Zhao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2480 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z. Recycled Pb/C-catalyzed one-pot synthesis of 1-carbonyl-1H-indoles from 2-iodoanilines and calcium carbide. J Chem Sci 136, 52 (2024). https://doi.org/10.1007/s12039-024-02286-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-024-02286-2

Keywords

Navigation