Log in

Antibacterial properties of human beta defensin-3 derivative: CHRG01

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Antibiotic resistance in bacteria is a major health concern. Antimicrobial peptides (AMPs) are a class of peptides that are efficient in killing most microbes yet development of resistance to AMPs is rare. However, complex secondary and tertiary structures and difficulties in isolating AMPs have limited their use as antibiotics. It has been demonstrated earlier that small peptides derived from human β defensin-3 (HBD-3) also show antibacterial activity. Here, we perform a detailed characterization of the antibacterial activity of one such derivative: CHRG01. While HBD-3 has 45 amino acids with three disulphide bonds and a β-sheet folded structure, CHRG01 has only 14 amino acids with the cysteine residues replaced by serine. The antibacterial nature of CHRG01 was studied using scanning electron microscopy (SEM), confocal microscopy, circular dichroism (CD) and small-angle X-ray scattering (SAXS). CD data show that CHRG01 is random coiled in solution. SEM and confocal studies show that the mode of action of CHRG01 is pore forming. SAXS studies show that CHRG01 induces a negative Gaussian curvature, the type of curvature needed for pore formation. The above results show that CHRG01, a small peptide without any complex structure, is capable of killing bacteria by permeabilizing their outer membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M and Wilson JM 1998 Human b-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest. 102 874–880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boman HG 1991 Antibacterial peptides: key components needed in immunity. Cell 65 205–207

    Article  PubMed  CAS  Google Scholar 

  • Boman HG 2003 Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254 197–215

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA 2005 Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3 238–250

    Article  PubMed  CAS  Google Scholar 

  • Dhople V, Krukemeyer A and Ramamoorthy A 2006 The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim. Biophys. Acta, Biomembr. 1758 1499–1512

    Article  CAS  Google Scholar 

  • Falla TJ, Nedra Karunaratne D and Hancock REW 1996 Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem. 271 19298–19303

    Article  PubMed  CAS  Google Scholar 

  • Fujii G, Selsted ME and Eisenberg D 1993 Defensins promote fusion and lysis of negatively charged membranes. Protein Sci. 2 1301–1312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF and Lehrer RI 1985 Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76 1427–1435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García J-RC, Jaumann F, Schulz S, Krause A, Rodríguez-Jiménez J, Forssmann U, Adermann K et al. 2001 Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 306 257–264

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E and Schröder JM 2001 Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276 5707–5713

    Article  PubMed  CAS  Google Scholar 

  • Hoover DM, Wu Z, Tucker K, Lu W and Lubkowski J 2003 Antimicrobial characterization of human beta-defensin 3 derivatives. Antimicrob. Agents Chemother. 47 2804–2809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang HW 2004 Molecular mechanism of peptide-induced pores in membranes. Phys. Rev. Lett. 92 1–4

    CAS  Google Scholar 

  • Jenssen H, Hamill P and Hancock REW 2006 Peptide antimicrobial agents. Clin. Microbiol. Rev. 19 491–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kagan BL, Selsted ME, Ganz T and Lehrer R 1990 Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 87 210–214

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Hung W, Chen F and Huang HW 2005 Many-body effect of antimicrobial peptides: on the correlation between lipid’s spontaneous curvature and pore formation. Biophys. J. 89 4006–4016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra A, Lai GH, Schmidt NW, Sun VZ, Rodriguez AR, Tong R, et al. 2011 Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. USA 108 16883–16888

  • Nguyen LT, Haney EF and Vogel HJ 2011 The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29 464–472

    Article  PubMed  CAS  Google Scholar 

  • Otvos JL 2002 The short proline-rich antibacterial peptide family. Cell. Mol. Life Sci. 59 1081–1095

    Article  Google Scholar 

  • Park S, Park Y and Hahm K 2011 The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int. J. Mol. Sci. 12 5971–5992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quiñones-Mateu M, Lederman M, Feng Z, Chakraborty B, Weber J, Rangel H, et al. 2003 Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS (London, England), 17 F39–F48

  • Sahly H, Schubert S, Harder J, Rautenberg P, Ullmann U, Schröder J and Podschun R 2003 Burkholderia is highly resistant to human beta-defensin 3. Antimicrob. Agents Chemother. 47 1739–1741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schibli DJ, Hunter HN, Aseyev V, Starner TD, Wiencek JM, McCray PB, et al. 2002 The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J. Biol. Chem. 277 8279–8289

    Article  PubMed  CAS  Google Scholar 

  • Schmidt NW, Mishra A, Lai GH, Davis M, Sanders LK, Tran D, et al. 2011 Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization. J. Am. Chem. Soc. 133 6720–6727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selsted ME, Brown DM, DeLange RJ, Harwig SS and Lehrer RI 1985 Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J. Biol. Chem. 260 4579–4584

    PubMed  CAS  Google Scholar 

  • Seo M, Won H, Kim J, Mishig-ochir T and Lee B 2012 Antimicrobial peptides for therapeutic applications: a review. Molecules. 17 12276–12286

    Article  PubMed  CAS  Google Scholar 

  • Tossi A, Sandri L and Giangaspero A 2000 Amphipathic, alpha helical antimicrobial peptides. Biopolymers (Peptide Science) 55 4–30.

    Article  CAS  Google Scholar 

  • Wimley WC and Hristova K 2011 Antimicrobial peptides: successes, challenges and unanswered questions. J. Membr. Biol. 239 27–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang D, Biragyn A, Hoover DM, Lubkowski J and Oppenheim JJ 2004 Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22 181–215

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M 1992 Antibiotic peptides as mediators of innate immunity. Curr. Opin. Immunol. 4 3–7

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M 2002 Antimicrobial peptides of multicellular organisms. Nat. Rev. 415 389–395

    CAS  Google Scholar 

  • Zucht HD, Grabowsky J, Schrader M, Liepke C, Jürgens M, Schulz-Knappe P and Forssmann WG 1998 Human beta-defensin-1: a urinary peptide present in variant molecular forms and its putative functional implication. Eur. J. Med. Res. 3 3–5

    Google Scholar 

Download references

Acknowledgements

We thank Dr Rajesh Vasita, Central University of Gujarat, Gandhinagar, for his help with confocal microscopy work. We also thank Dr Santanu Pal, IISER Mohali, for X-ray scattering studies. This work is funded by the Department of Science and Technology grant SB/FT/LS-216/2012 and Indian Institute of Technology Gandhinagar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Mishra.

Additional information

Communicated by BJ Rao.

Corresponding editor: BJ Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, A., Majhi, S. & Mishra, A. Antibacterial properties of human beta defensin-3 derivative: CHRG01. J Biosci 43, 707–715 (2018). https://doi.org/10.1007/s12038-018-9790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9790-1

Keywords

Navigation