Log in

Farrerol Alleviates Cerebral Ischemia–Reperfusion Injury by Promoting Neuronal Survival and Reducing Neuroinflammation

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemia–reperfusion (I/R) injury is a key influencing factor in the outcome of stroke. Inflammatory response, oxidative stress, and neuronal apoptosis are among the main factors that affect the progression of I/R injury. Farrerol (FAR) is a natural compound that can effectively inhibit the inflammatory response and oxidative stress. However, the role of FAR in cerebral I/R injury remains unknown. In this study, we found that FAR reduced brain injury and neuronal viability after cerebral I/R injury. Meanwhile, administration of FAR also reduced the inflammatory response of microglia after brain injury. Mechanistically, FAR treatment directly reduced neuronal death after oxygen glucose deprivation/re-oxygenation (OGD/R) through enhancing cAMP-response element binding protein (CREB) activation to increase the expression of downstream neurotrophic factors and anti-apoptotic genes. Moreover, FAR decreased the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, inhibited microglia activation, and reduced the production of inflammatory cytokines in microglia after OGD/R treatment or LPS stimulation. The compromised inflammatory response by FAR directly promoted the survival of neurons after OGD/R. In conclusion, FAR exerted a protective effect on cerebral I/R injury by directly decreasing neuronal death through upregulating CREB expression and attenuating neuroinflammation. Therefore, FAR could be a potentially effective drug for the treatment of cerebral I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

I/R:

Ischemia-reperfusion

FAR:

Farrerol

ROS:

Reactive oxygen species

ERK:

Extracellular signal-regulated kinase

CREB:

CAMP-response element binding protein

MAPK:

Mitogen-activated protein kinase

HR:

Homologous recombination

ECA:

External carotid artery

MCA:

Middle cerebral artery

rCBF:

Regional cerebral blood flow

tMCAO:

Transient middle cerebral artery occlusion

mNSS:

Modified Neurological Severity Scores

OGD/R:

Oxygen glucose deprivation/re-oxygenation

BSA:

Bovine serum albumin

qRT-PCR:

Quantitative real-time PCR

LDH:

Lactate dehydrogenase

LPS:

Lipopolysaccharide

PFA:

Paraformaldehyde

RT:

Room temperature

PBS:

Phosphate-buffered solution

PI:

Propidium iodide

TTC:

2,3,5-Triphenyltetrazolium chloride

DAPI:

Dye 4′,6-diamidino-2-phenylindole

MFI:

Mean fluorescence intensity

References

  1. Group GNDC (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 16(11):877–897. https://doi.org/10.1016/S1474-4422(17)30299-5

    Article  Google Scholar 

  2. Collaborators GDaIIaP (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet (London, England) 388(10053):1545–1602. https://doi.org/10.1016/S0140-6736(16)31678-6

    Article  Google Scholar 

  3. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA et al (2015) A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 372(1):11–20. https://doi.org/10.1056/NEJMoa1411587

    Article  CAS  PubMed  Google Scholar 

  4. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart RA, Torbey MT et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378(8):708–718. https://doi.org/10.1056/NEJMoa1713973

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mizuma A, You JS, Yenari MA (2018) Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke 49(7):1796–1802. https://doi.org/10.1161/STROKEAHA.117.017286

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CBLM et al (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet (London, England) 387(10029):1723–1731. https://doi.org/10.1016/S0140-6736(16)00163-X

    Article  PubMed  Google Scholar 

  7. Church EW, Gundersen A, Glantz MJ, Simon SD (2017) Number needed to treat for stroke thrombectomy based on a systematic review and meta-analysis. Clin Neurol Neurosurg 156:83–88. https://doi.org/10.1016/j.clineuro.2017.03.005

    Article  PubMed  Google Scholar 

  8. Jurcau A, Simion A (2021) Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies. Int J Mol Sci 23(1):14. https://doi.org/10.3390/ijms23010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu L, **ong X, Wu X, Ye Y, Jian Z, Zhi Z, Gu L (2020) Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 13:28. https://doi.org/10.3389/fnmol.2020.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23. https://doi.org/10.1007/s12035-012-8344-z

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Z, Duan Z, Cui Y (2023) CD8+ T cells in brain injury and neurodegeneration. Front Cell Neurosci 17. https://doi.org/10.3389/fncel.2023.1281763

  12. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188. https://doi.org/10.1016/j.pneurobio.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  13. Zhu YM, Wang CC, Chen L, Qian LB, Ma LL, Yu J, Zhu MH, Wen CY et al (2013) Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats. Brain Res 1494:1–8. https://doi.org/10.1016/j.brainres.2012.11.047

    Article  CAS  PubMed  Google Scholar 

  14. Endo H, Nito C, Kamada H, Nishi T, Chan PH (2006) Activation of the Akt/GSK3β signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26(12):1479–1489. https://doi.org/10.1038/sj.jcbfm.9600303

    Article  CAS  PubMed  Google Scholar 

  15. Noshita N, Lewén A, Sugawara T, Chan PH (2002) Akt phosphorylation and neuronal survival after traumatic brain injury in mice. Neurobiol Dis 9(3):294–304. https://doi.org/10.1006/nbdi.2002.0482

    Article  CAS  PubMed  Google Scholar 

  16. Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP (2006) Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441(7092):523–527. https://doi.org/10.1038/nature04809

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shieh PB, Hu SC, Bobb K, Timmusk T, Ghosh A (1998) Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20(4):727–740. https://doi.org/10.1016/s0896-6273(00)81011-9

    Article  CAS  PubMed  Google Scholar 

  18. Meller R, Minami M, Cameron JA, Impey S, Chen D, Lan J-Q, Henshall DC, Simon RP (2005) CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab 25(2):234–246. https://doi.org/10.1038/sj.jcbfm.9600024

    Article  CAS  PubMed  Google Scholar 

  19. Liu R, Tang JC, Pan MX, Zhuang Y, Zhang Y, Liao HB, Zhao D, Lei Y et al (2018) ERK 1/2 activation mediates the neuroprotective effect of BpV(pic) in Focal cerebral ischemia-reperfusion injury. Neurochem Res 43(7):1424–1438. https://doi.org/10.1007/s11064-018-2558-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drieu A, Levard D, Vivien D, Rubio M (2018) Anti-inflammatory treatments for stroke: from bench to bedside. Ther Adv Neurol Disord 11:1756286418789854. https://doi.org/10.1177/1756286418789854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Surinkaew P, Sawaddiruk P, Apaijai N, Chattipakorn N, Chattipakorn SC (2018) Role of microglia under cardiac and cerebral ischemia/reperfusion (I/R) injury. Metab Brain Dis 33(4):1019–1030. https://doi.org/10.1007/s11011-018-0232-4

    Article  PubMed  Google Scholar 

  22. Yang C, Hawkins KE, Dore S, Candelario-Jalil E (2019) Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 316(2):C135–C153. https://doi.org/10.1152/ajpcell.00136.2018

    Article  CAS  PubMed  Google Scholar 

  23. Rayasam A, Hsu M, Kijak JA, Kissel L, Hernandez G, Sandor M, Fabry Z (2018) Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology 154(3):363–376. https://doi.org/10.1111/imm.12918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma N, Wei W, Fan X, Ci X (2019) Farrerol attenuates cisplatin-induced nephrotoxicity by inhibiting the reactive oxygen species-mediated oxidation, inflammation, and apoptotic signaling pathways. Front Physiol 10:1419. https://doi.org/10.3389/fphys.2019.01419

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cui B, Zhang S, Wang Y, Guo Y (2019) Farrerol attenuates beta-amyloid-induced oxidative stress and inflammation through Nrf2/Keap1 pathway in a microglia cell line. Biomed Pharmacother 109:112–119. https://doi.org/10.1016/j.biopha.2018.10.053

    Article  CAS  PubMed  Google Scholar 

  26. Yang Z, Fu Y, Liu B, Zhou E, Liu Z, Song X, Li D, Zhang N (2013) Farrerol regulates antimicrobial peptide expression and reduces Staphylococcus aureus internalization into bovine mammary epithelial cells. Microb Pathog 65:1–6. https://doi.org/10.1016/j.micpath.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  27. Cui B, Guo X, You Y, Fu R (2019) Farrerol attenuates MPP(+) -induced inflammatory response by TLR4 signaling in a microglia cell line. Phytother Res 33(4):1134–1141. https://doi.org/10.1002/ptr.6307

    Article  CAS  PubMed  Google Scholar 

  28. Qin X, Hou X, Zhang M, Liang T, Zhi J, Han L, Li Q (2014) Relaxation of rat aorta by farrerol correlates with potency to reduce intracellular calcium of VSMCs. Int J Mol Sci 15(4):6641–6656. https://doi.org/10.3390/ijms15046641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li QY, Chen L, Zhu YH, Zhang M, Wang YP, Wang MW (2011) Involvement of estrogen receptor-beta in farrerol inhibition of rat thoracic aorta vascular smooth muscle cell proliferation. Acta Pharmacol Sin 32(4):433–440. https://doi.org/10.1038/aps.2011.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hou X, Qin X, Li Q (2018) Structureactivity associations in novel farrerol derivatives with vasorelaxant properties. Mol Med Rep 18(5):4709–4715. https://doi.org/10.3892/mmr.2018.9439

    Article  CAS  PubMed  Google Scholar 

  31. Dai F, Gao L, Zhao Y, Wang C, **e S (2016) Farrerol inhibited angiogenesis through Akt/mTOR, Erk and Jak2/Stat3 signal pathway. Phytomedicine 23(7):686–693. https://doi.org/10.1016/j.phymed.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  32. Li B, Chen P, Wang JH, Li L, Gong JL, Yao H (2019) Farrerol overcomes the invasiveness of lung squamous cell carcinoma cells by regulating the expression of inducers of epithelial mesenchymal transition. Microb Pathog 131:277. https://doi.org/10.1016/j.micpath.2018.04.052

    Article  CAS  PubMed  Google Scholar 

  33. Zhang T, Liu H, Liu M, Wang C (2021) Farrerol suppresses the progression of laryngeal squamous cell carcinoma via the mitochondria-mediated pathway. Eur J Pharmacol 913:174636. https://doi.org/10.1016/j.ejphar.2021.174636

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Chen Y, Yang J, Zhang J, Yu J, Wang M, Zhao X, Wei K et al (2020) A high-throughput small molecule screen identifies farrerol as a potentiator of CRISPR/Cas9-mediated genome editing. Elife 9:e56008. https://doi.org/10.7554/eLife.56008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, Sakai R, Matsuo K et al (2019) Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565(7738):246–250. https://doi.org/10.1038/s41586-018-0824-5

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R, Zhang Z (2021) ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 93:312–321. https://doi.org/10.1016/j.bbi.2021.01.003

    Article  CAS  PubMed  Google Scholar 

  37. Liu F, Schafer DP, McCullough LD (2009) TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 179(1):1–8. https://doi.org/10.1016/j.jneumeth.2008.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen H-Z, Guo S, Li Z-Z, Lu Y, Jiang D-S, Zhang R, Lei H, Gao L et al (2014) A critical role for interferon regulatory factor 9 in cerebral ischemic stroke. J Neurosci 34(36):11897–11912. https://doi.org/10.1523/JNEUROSCI.1545-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  39. Quaegebeur A, Segura I, Schmieder R, Verdegem D, Decimo I, Bifari F, Dresselaers T, Eelen G et al (2016) Deletion or inhibition of the oxygen sensor PHD1 protects against ischemic stroke via reprogramming of neuronal metabolism. Cell Metab 23(2):280–291. https://doi.org/10.1016/j.cmet.2015.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T et al (2011) SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron 69(1):106–119. https://doi.org/10.1016/j.neuron.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  41. Zhang SZ, Wang QQ, Yang QQ, Gu HY, Yin YQ, Li YD, Hou JC, Chen R et al (2019) NG2 glia regulate brain innate immunity via TGF-beta2/TGFBR2 axis. BMC Med 17(1):204. https://doi.org/10.1186/s12916-019-1439-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, Zhou QB, Huang YY et al (2013) Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature 494(7435):90–94. https://doi.org/10.1038/nature11748

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Young K, Morrison H (2018) Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ. J Visual Exp 136:57648. https://doi.org/10.3791/57648

    Article  Google Scholar 

  44. Wang A, Jia B, Zhang X, Huo X, Chen J, Gui L, Cai Y, Guo Z et al (2023) Efficacy and safety of butylphthalide in patients with acute ischemic stroke: a randomized clinical trial. JAMA Neurol 80(8):851–859. https://doi.org/10.1001/jamaneurol.2023.1871

    Article  PubMed  Google Scholar 

  45. Morioka T, Kalehua AN, Streit WJ (1993) Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol 327(1):123–132. https://doi.org/10.1002/cne.903270110

    Article  CAS  PubMed  Google Scholar 

  46. Chen A, **ong LJ, Tong Y, Mao M (2013) The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep 1(2):167–176. https://doi.org/10.3892/br.2012.48

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Simon RP, Nagayama T, Zhu R, Loeffert JE, Watkins SC, Graham SH (2000) Suppression of endogenous bcl-2 expression by antisense treatment exacerbates ischemic neuronal death. J Cereb Blood Flow Metab 20(7):1033–1039. https://doi.org/10.1097/00004647-200007000-00002

    Article  CAS  PubMed  Google Scholar 

  48. **e F, Li BX, Kassenbrock A, Xue C, Wang X, Qian DZ, Sears RC, **ao X (2015) Identification of a potent inhibitor of CREB-mediated gene transcription with efficacious in vivo anticancer activity. J Med Chem 58(12):5075–5087. https://doi.org/10.1021/acs.jmedchem.5b00468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li BX, Gardner R, Xue C, Qian DZ, **e F, Thomas G, Kazmierczak SC, Habecker BA et al (2016) Systemic inhibition of CREB is well-tolerated in vivo. Sci Rep 6(1):34513. https://doi.org/10.1038/srep34513

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li Y, Zeng Y, Meng T, Gao X, Huang B, He D, Ran X, Du J et al (2019) Farrerol protects dopaminergic neurons in a rat model of lipopolysaccharide-induced Parkinson’s disease by suppressing the activation of the AKT and NF-kappaB signaling pathways. Int Immunopharmacol 75:105739. https://doi.org/10.1016/j.intimp.2019.105739

    Article  CAS  PubMed  Google Scholar 

  51. ** K, Mao XO, Simon RP, Greenberg DA (2001) Cyclic AMP response element binding protein (CREB) and CREB binding protein (CBP) in global cerebral ischemia. J Mol Neurosci: MN 16(1):49–56. https://doi.org/10.1385/JMN:16:1:49

    Article  CAS  PubMed  Google Scholar 

  52. Steven A, Seliger B (2016) Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 7(23):35454–35465. https://doi.org/10.18632/oncotarget.7721

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wen AY, Sakamoto KM, Miller LS (2010) The role of the transcription factor CREB in immune function. J Immunol 185(11):6413–6419. https://doi.org/10.4049/jimmunol.1001829

    Article  CAS  PubMed  Google Scholar 

  54. Wu Y, Yao J, Feng K (2020) miR-124-5p/NOX2 axis modulates the ROS production and the inflammatory microenvironment to protect against the cerebral I/R injury. Neurochem Res 45(2):404–417. https://doi.org/10.1007/s11064-019-02931-0

    Article  CAS  PubMed  Google Scholar 

  55. Liou K-T, Shen Y-C, Chen C-F, Tsao C-M, Tsai S-K (2003) Honokiol protects rat brain from focal cerebral ischemia-reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Res 992(2):159–166. https://doi.org/10.1016/j.brainres.2003.08.026

    Article  CAS  PubMed  Google Scholar 

  56. Yan C, Zhang X, Miao J, Yuan H, Liu E, Liang T, Li Q (2020) Farrerol directly targets GSK-3beta to activate Nrf2-ARE pathway and protect EA.hy926 cells against oxidative stress-induced injuries. Oxid Med Cell Longev 2020:5967434. https://doi.org/10.1155/2020/5967434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. CiLvWangWangPengQinCheng XHLXLFXG (2015) The antioxidative potential of farrerol occurs via the activation of Nrf2 mediated HO-1 signaling in RAW 264.7 cells. Chem Biol Interact 239:192–199. https://doi.org/10.1016/j.cbi.2015.06.032

    Article  CAS  Google Scholar 

  58. Li Y, Gong Q, Guo W, Kan X, Xu D, Ma H, Fu S, Liu J (2018) Farrerol relieve lipopolysaccharide (LPS)-induced mastitis by inhibiting AKT/NF-kappaB p65, ERK1/2 and P38 signaling pathway. Int J Mol Sci 19(6):1770. https://doi.org/10.3390/ijms19061770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China (Grant number 2022KJ146, Yu Cui) and Natural Science Foundation of Shandong Province (Grant number ZR202102190696, Rui Xu). Rui Xu also received research support from the Project of Bei**g DNVA Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. R. Zhao and X. Zhou designed the research and wrote the first draft of the manuscript. Z. Zhao and W. Liu prepared the material. R. Zhao, M. Lv, Z. Zhang, and C. Wang performed the experiments. X. Zhou, T. Li, Z. Yang, and Q. Wan collected and analyzed the data. R. Xu and Y. Cui conceptualized the research and directed the study. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rui Xu or Yu Cui.

Ethics declarations

Ethics Approval

All animal experiments were conducted in compliance with National Institutes of Health Guidelines and were approved by the Qingdao University Laboratory Animal Welfare Ethics Committee (July 23, 2021/ No. 20210820C572720220520068).

Consent to Participate

Not applicable.

Consent for Publication

All authors have approved the contents of this manuscript and provided consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1650 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Zhou, X., Zhao, Z. et al. Farrerol Alleviates Cerebral Ischemia–Reperfusion Injury by Promoting Neuronal Survival and Reducing Neuroinflammation. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04031-9

Keywords

Navigation