Log in

Clusterin Binding Modulates the Aggregation and Neurotoxicity of Amyloid-β(1–42)

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) aggregates in the brain. Clusterin (CLU), also known as apolipoprotein J, is a potent risk factor associated with AD pathogenesis, in which Aβ aggregation is essentially involved. We observed close colocalization of CLU and Aβ(1–42) (Aβ42) in parenchymal amyloid plaques or vascular amyloid deposits in the brains of human amyloid precursor protein (hAPP)-transgenic Tg2576 mice. Therefore, to elucidate the binding interaction between CLU and Aβ42 and its impact on amyloid aggregation and toxicity, the two synthetic proteins were incubated together under physiological conditions, and their structural and morphological variations were investigated using biochemical, biophysical, and microscopic analyses. Synthetic CLU spontaneously bound to different possible variants of Aβ42 aggregates with very high affinity (Kd = 2.647 nM) in vitro to form solid CLU–Aβ42 complexes. This CLU binding prevented further aggregation of Aβ42 into larger oligomers or fibrils, enriching the population of smaller Aβ42 oligomers and protofibrils and monomers. CLU either alleviated or augmented Aβ42-induced cytotoxicity and apoptosis in the neuroblastoma-derived SH-SY5Y and N2a cells, depending on the incubation period and the molar ratio of CLU:Aβ42 involved in the reaction before addition to the cells. Thus, the effects of CLU on Aβ42-induced cytotoxicity were likely determined by the extent to which it bound and sequestered toxic Aβ42 oligomers or protofibrils. These findings suggest that CLU could influence amyloid neurotoxicity and pathogenesis by modulating Aβ aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data obtained during the present study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

Aβ:

Amyloid-β

Aβ42:

Aβ(1–42)

AD:

Alzheimer’s disease

ADDL:

Aβ-derived diffusible ligand

Alexa633:

Alexa Fluor 633

Alexa633–CLU:

Alexa633-labeled CLU

CLSM:

Confocal laser scanning microscopy

CLU:

Clusterin

co-IP:

Co-immunoprecipitation

ELISA:

Enzyme-linked immunosorbent assay

FCCS:

Fluorescence cross-correlation spectroscopy

FCS:

Fluorescence correlation spectroscopy

FITC:

Fluorescein isothiocyanate

FITC–Aβ42:

FITC-conjugated Aβ42

hAPP:

Human amyloid precursor protein

HRP:

Horseradish peroxide

LSM:

Laser scanning microscope

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

PPI:

Protein–protein interaction

TEM:

Transmission electron microscopy

WT mice:

Wild-type mice

References

  1. Lorenzo A, Yankner BA (1994) β-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A 91:12243–12247. https://doi.org/10.1073/pnas.91.25.12243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) β-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888. https://doi.org/10.1016/0896-6273(95)90232-5

    Article  CAS  PubMed  Google Scholar 

  3. Howlett DR, Jennings KH, Lee DC, Clark MSG, Brown F, Wetzel R, Wood SJ, Camilleri P, Roberts GW (1995) Aggregation state and neurotoxic properties of Alzheimer β-amyloid peptide. Neurodegeneration 4:23–32. https://doi.org/10.1006/neur.1995.0003

    Article  CAS  PubMed  Google Scholar 

  4. Oda T, Wals P, Osterburg HH et al (1995) Clusterin (apoJ) alters the aggregation of amyloid β-peptide (Aβ1–42) and forms slowly sedimenting Aβ complexes that cause oxidative stress. Exp Neurol 136:22–31. https://doi.org/10.1006/exnr.1995.1080

    Article  CAS  PubMed  Google Scholar 

  5. Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453. https://doi.org/10.1073/pnas.95.11.6448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112. https://doi.org/10.1038/nrm2101

    Article  CAS  PubMed  Google Scholar 

  7. Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113. https://doi.org/10.1016/j.bbr.2008.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis J, Van Nostrand WE (1996) Enhanced pathologic properties of Dutch-type mutant amyloid β-protein. Proc Natl Acad Sci U S A 93:2996–3000. https://doi.org/10.1073/pnas.93.7.2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murakami K, Irie K, Morimoto A, Ohigashi H, Shindo M, Nagao M, Shimizu T, Shirasawa T (2003) Neurotoxicity and physicochemical properties of Aβ mutant peptides from cerebral amyloid angiopathy: implication for the pathogenesis of cerebral amyloid angiopathy and Alzheimer′s disease. J Biol Chem 278:46179–46187. https://doi.org/10.1074/jbc.M301874200

    Article  CAS  PubMed  Google Scholar 

  10. Luheshi LM, Tartaglia GG, Brorsson AC et al (2007) Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity. PLoS Biol 5:e290. https://doi.org/10.1371/journal.pbio.0050290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 5:831–839. https://doi.org/10.1016/0896-6273(90)90342-d

    Article  CAS  PubMed  Google Scholar 

  12. Oda T, Pasinetti GM, Osterburg HH, Anderson C, Johnson SA, Finch CE (1994) Purification and characterization of brain clusterin. Biochem Biophys Res Commun 204:1131–1136. https://doi.org/10.1006/bbrc.1994.2580

    Article  CAS  PubMed  Google Scholar 

  13. Bertrand P, Poirier J, Oda T, Finch CE, Pasinetti GM (1995) Association of apolipoprotein E genotype with brain levels of apolipoprotein E and apolipoprotein J (clusterin) in Alzheimer disease. Brain Res Mol Brain Res 33:174–178. https://doi.org/10.1016/0169-328x(95)00097-c

    Article  CAS  PubMed  Google Scholar 

  14. Choi-Miura NH, Oda T (1996) Relationship between multifunctional protein “clusterin” and Alzheimer disease. Neurobiol Aging 17:717–722. https://doi.org/10.1016/0197-4580(96)00106-6

    Article  CAS  PubMed  Google Scholar 

  15. Giannakopoulos P, Kövari E, French LE, Viard I, Hof PR, Bouras C (1998) Possible neuroprotective role of clusterin in Alzheimer’s disease: a quantitative immunocytochemical study. Acta Neuropathol 95:387–394. https://doi.org/10.1007/s004010050815

    Article  CAS  PubMed  Google Scholar 

  16. Lidström AM, Bogdanovic N, Hesse C, Volkman I, Davidsson P, Blennow K (1998) Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer’s disease. Exp Neurol 154:511–521. https://doi.org/10.1006/exnr.1998.6892

    Article  PubMed  Google Scholar 

  17. Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093. https://doi.org/10.1038/ng.440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099. https://doi.org/10.1038/ng.439

    Article  CAS  PubMed  Google Scholar 

  19. Desikan RS, Thompson WK, Holland D et al (2014) The role of clusterin in amyloid-β-associated neurodegeneration. JAMA Neurol 71:180–187. https://doi.org/10.1001/jamaneurol.2013.4560

    Article  PubMed  PubMed Central  Google Scholar 

  20. Choi-Miura NH, Ihara Y, Fukuchi K, Takeda M, Nakano Y, Tobe T, Tomita M (1992) SP-40,40 is a constituent of Alzheimer’s amyloid. Acta Neuropathol 83:260–264. https://doi.org/10.1007/BF00296787

    Article  CAS  PubMed  Google Scholar 

  21. Kida E, Choi-Miura NH, Wisniewski KE (1995) Deposition of apolipoproteins E and J in senile plaques is topographically determined in both Alzheimer’s disease and Down’s syndrome brain. Brain Res 685:211–216. https://doi.org/10.1016/0006-8993(95)00482-6

    Article  CAS  PubMed  Google Scholar 

  22. Calero M, Rostagno A, Matsubara E, Zlokovic B, Frangione B, Ghiso J (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 50:305–315. https://doi.org/10.1002/1097-0029(20000815)50:4%3c305::AID-JEMT10%3e3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  23. Howlett DR, Hortobágyi T, Francis PT (2013) Clusterin associates specifically with Aβ40 in Alzheimer’s disease brain tissue. Brain Pathol 23:623–632. https://doi.org/10.1111/bpa.12057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miners JS, Clarke P, Love S (2017) Clusterin levels are increased in Alzheimer’s disease and influence the regional distribution of Aβ. Brain Pathol 27:305–313. https://doi.org/10.1111/bpa.12392

    Article  CAS  PubMed  Google Scholar 

  25. Camacho J, Moliné T, Bonaterra-Pastra A, Ramón Y Cajal S, Martínez-Sáez E, Hernández-Guillamon M (2019) Brain ApoA-I, ApoJ and ApoE immunodetection in cerebral amyloid angiopathy. Front Neurol 10:187. https://doi.org/10.3389/fneur.2019.00187

    Article  PubMed  PubMed Central  Google Scholar 

  26. Narayan P, Orte A, Clarke RW et al (2011) The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β(1–40) peptide. Nat Struct Mol Biol 19:79–83. https://doi.org/10.1038/nsmb.2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Narayan P, Meehan S, Carver JA, Wilson MR, Dobson CM, Klenerman D (2012) Amyloid-β oligomers are sequestered by both intracellular and extracellular chaperones. Biochemistry 51:9270–9276. https://doi.org/10.1021/bi301277k

    Article  CAS  PubMed  Google Scholar 

  28. Ghiso J, Matsubara E, Koudinov A, Choi-Miura NH, Tomita M, Wisniewski T, Frangione B (1993) The cerebrospinal-fluid soluble form of Alzheimer’s amyloid β is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J 293(Pt 1):27–30. https://doi.org/10.1042/bj2930027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsubara E, Frangione B, Ghiso J (1995) Characterization of apolipoprotein J-Alzheimer’s Aβ interaction. J Biol Chem 270:7563–7567. https://doi.org/10.1074/jbc.270.13.7563

    Article  CAS  PubMed  Google Scholar 

  30. Beeg M, Stravalaci M, Romeo M, Carrá AD, Cagnotto A, Rossi A, Diomede L, Salmona M et al (2016) Clusterin binds to Aβ1-42 oligomers with high affinity and interferes with peptide aggregation by inhibiting primary and secondary nucleation. J Biol Chem 291:6958–6966. https://doi.org/10.1074/jbc.M115.689539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hammad SM, Ranganathan S, Loukinova E, Twal WO, Argraves WS (1997) Interaction of apolipoprotein J-amyloid β-peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid β-peptide. J Biol Chem 272:18644–18649. https://doi.org/10.1074/jbc.272.30.18644

    Article  CAS  PubMed  Google Scholar 

  32. Bailey RW, Dunker AK, Brown CJ, Garner EC, Griswold MD (2001) Clusterin, a binding protein with a molten globule-like region. Biochemistry 40:11828–11840. https://doi.org/10.1021/bi010135x

    Article  CAS  PubMed  Google Scholar 

  33. Spatharas PM, Nasi GI, Tsiolaki PL, Theodoropoulou MK, Papandreou NC, Hoenger A, Trougakos IP, Iconomidou VA (2022) Clusterin in Alzheimer’s disease: an amyloidogenic inhibitor of amyloid formation? Biochim Biophys Acta Mol Basis Dis 1868:166384. https://doi.org/10.1016/j.bbadis.2022.166384

    Article  CAS  PubMed  Google Scholar 

  34. Yerbury JJ, Poon S, Meehan S, Thompson B, Kumita JR, Dobson CM, Wilson MR (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J 21:2312–2322. https://doi.org/10.1096/fj.06-7986com

    Article  CAS  PubMed  Google Scholar 

  35. Boggs LN, Fuson KS, Baez M, Churgay L, McClure D, Becker G, May PC (1996) Clusterin (Apo J) protects against in vitro amyloid-β(1–40) neurotoxicity. J Neurochem 67:1324–1327. https://doi.org/10.1046/j.1471-4159.1996.67031324.x

    Article  CAS  PubMed  Google Scholar 

  36. Mannini B, Cascella R, Zampagni M et al (2012) Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers. Proc Natl Acad Sci U S A 109:12479–12484. https://doi.org/10.1073/pnas.1117799109

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cascella R, Conti S, Tatini F, Evangelisti E, Scartabelli T, Casamenti F, Wilson MR, Chiti F et al (2013) Extracellular chaperones prevent Aβ42-induced toxicity in rat brains. Biochim Biophys Acta 1832:1217–1226. https://doi.org/10.1074/jbc.274.11.6875

    Article  CAS  PubMed  Google Scholar 

  38. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881. https://doi.org/10.1074/jbc.274.11.6875

    Article  CAS  PubMed  Google Scholar 

  39. DeMattos RB, Cirrito JR, Parsadanian M et al (2004) ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 41:193–202. https://doi.org/10.1016/s0896-6273(03)00850-x

    Article  CAS  PubMed  Google Scholar 

  40. DeMattos RB, O’dell MA, Parsadanian M, Taylor JW, Harmony JA, Bales KR, Paul SM, Aronow BJ et al (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 99:10843–10848. https://doi.org/10.1073/pnas.162228299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wojtas AM, Kang SS, Olley BM et al (2017) Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc Natl Acad Sci U S A 114:E6962–E6971. https://doi.org/10.1073/pnas.1701137114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oh SB, Kim MS, Park S, Son H, Kim SY, Kim MS, Jo DG, Tak E et al (2019) Clusterin contributes to early stage of Alzheimer’s disease pathogenesis. Brain Pathol 29:217–231. https://doi.org/10.1111/bpa.12660

    Article  CAS  PubMed  Google Scholar 

  43. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102. https://doi.org/10.1126/science.274.5284.99

    Article  CAS  PubMed  Google Scholar 

  44. Derrick JS, Kerr RA, Nam Y et al (2015) A redox-active, compact molecule for cross-linking amyloidogenic peptides into nontoxic, off-pathway aggregates: In vitro and in vivo efficacy and molecular mechanisms. J Am Chem Soc 137:14785–14797. https://doi.org/10.1021/jacs.5b10043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beck MW, Derrick JS, Kerr RA et al (2016) Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer’s disease. Nat Commun 7:13115. https://doi.org/10.1038/ncomms13115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim M, Kang J, Lee M et al (2020) Minimalistic principles for designing small molecules with multiple reactivities against pathological factors in dementia. J Am Chem Soc 142:8183–8193. https://doi.org/10.1021/jacs.9b13100

    Article  CAS  PubMed  Google Scholar 

  47. Pack CG, Aoki K, Taguchi H, Yoshida M, Kinjo M, Tamura M (2000) Effect of electrostatic interactions on the binding of charged substrate to GroEL studied by highly sensitive fluorescence correlation spectroscopy. Biochem Biophys Res Commun 267:300–304. https://doi.org/10.1006/bbrc.1999.1864

    Article  CAS  PubMed  Google Scholar 

  48. Pack CG, Yukii H, Toh-e A et al (2014) Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat Commun 5:3396. https://doi.org/10.1038/ncomms4396

    Article  CAS  PubMed  Google Scholar 

  49. Dive C, Gregory CD, Phipps DJ, Evans DL, Milner AE, Wyllie AH (1992) Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim Biophys Acta 1133:275–285. https://doi.org/10.1016/0167-4889(92)90048-g

    Article  CAS  PubMed  Google Scholar 

  50. Pollack A, Ciancio G (1990) Cell cycle phase-specific analysis of cell viability using Hoechst 33342 and propidium iodide after ethanol preservation. Methods Cell Biol 33:19–24. https://doi.org/10.1016/s0091-679x(08)60508-7

    Article  CAS  PubMed  Google Scholar 

  51. Oh SB, Kim JA, Park S, Lee JY (2020) Associative interactions among zinc, apolipoprotein E, and amyloid-β in the amyloid pathology. Int J Mol Sci 21:802. https://doi.org/10.3390/ijms21030802

    Article  CAS  PubMed Central  Google Scholar 

  52. Dowson JH (1981) A sensitive method for the demonstration of senile plaques in the dementing brain. Histopathology 5:305–310. https://doi.org/10.1111/j.1365-2559.1981.tb01789.x

    Article  CAS  PubMed  Google Scholar 

  53. Lee JY, Cho E, Seo JW, Hwang JJ, Koh JY (2012) Alteration of the cerebral zinc pool in a mouse model of Alzheimer disease. J Neuropathol Exp Neurol 71:211–222. https://doi.org/10.1097/NEN.0b013e3182417387

    Article  CAS  PubMed  Google Scholar 

  54. Röhr D, Boon BDC, Schuler M et al (2020) Label-free vibrational imaging of different Aβ plaque types in Alzheimer’s disease reveals sequential events in plaque development. Acta Neuropathol Commun 8:222. https://doi.org/10.1186/s40478-020-01091-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thal DR, Ghebremedhin E, Haass C, Schultz C (2002) UV light-induced autofluorescence of full-length Aβ-protein deposits in the human brain. Clin Neuropathol 21:35–40

    CAS  PubMed  Google Scholar 

  56. Calero M, Tokuda T, Rostagno A, Kumar A, Zlokovic B, Frangione B, Ghiso J (1999) Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 344(Pt 2):375–383. https://doi.org/10.1042/bj3440375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matsubara E, Soto C, Governale S, Frangione B, Ghiso J (1996) Apolipoprotein J and Alzheimer’s amyloid β solubility. Biochem J 316(Pt 2):671–679. https://doi.org/10.1042/bj3160671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rostagno A, Calero M, Holton JL, Revesz T, Lashley T, Jorge Ghiso J (2021) Association of clusterin with the BRI2-derived amyloid molecules ABri and Adan. Neurobiol Dis 158:105452. https://doi.org/10.1016/j.nbd.2021.105452

    Article  CAS  PubMed  Google Scholar 

  59. Scheidt T, Łapińska U, Kumita JR et al (2019) Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Sci Adv 5:eaau3112. https://doi.org/10.1126/sciadv.aau3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Poon S, Rybchyn MS, Easterbrook-Smith SB, Carver JA, Pankhurst GJ, Wilson MR (2002) Mildly. acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 277:39532–39540. https://doi.org/10.1074/jbc.M204855200

    Article  CAS  PubMed  Google Scholar 

  61. Pillot T, Drouet B, Queillé S, Labeur C, Vandekerchkhove J, Rosseneu M, Pinçon-Raymond M, Chambaz J (1999) The nonfibrillar amyloid β-peptide induces apoptotic neuronal cell death. J Neurochem 73:1626–1634. https://doi.org/10.1046/j.1471-4159.1999.0731626.x|

    Article  CAS  PubMed  Google Scholar 

  62. Sponne I, Fifre A, Drouet B et al (2003) Apoptotic neuronal cell death induced by the non-fibrillar amyloid-β peptide proceeds through an early ROS-dependent cytoskeleton perturbation. J Biol Chem 278:3437–3445. https://doi.org/10.1074/jbc.M206745200

    Article  CAS  PubMed  Google Scholar 

  63. Kriem B, Sponne I, Fifre A et al (2005) Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-β peptide. FASEB J 19:85–87. https://doi.org/10.1096/fj.04-1807fje

    Article  CAS  PubMed  Google Scholar 

  64. Wojtas AM, Sens JP, Kang SS et al (2020) Astrocyte-derived clusterin suppresses amyloid formation in vivo. Mol Neurodegener 15:71. https://doi.org/10.1186/s13024-020-00416-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Confocal Microscope and Electron Microscopy core facility at the ConveRgence mEDIcine research cenTer (CREDIT; Asan Medical Center) for their support and instrumentation.

Funding

This study was supported by the National Research Foundation, Ministry of Science & ICT (MSIT), Republic of Korea (NRF-2015R1A2A1A15052049 and NRF-2020R1F1A1048577 to JYL, and NRF-2018R1D1A1B07048696 to CGP), and the Asan Institute for Life Sciences, Asan Medical Center (2019IP0857 to JYL).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, experimental performance, and data analysis and interpretation. The first draft of the manuscript was cooperatively prepared by the first five co-authors (Yun-Mi Kim, Su Yeon Choi, SuJi Park, Shin Bi Oh, and MinKyo Jung), and the last four co-authors (Chan-Gi Pack, Jung ** Hwang, Eunyoung Tak, and Joo-Yong Lee) commented on and wrote the final version of the manuscript. All authors read and approved the final manuscript and this publication.

Corresponding author

Correspondence to Joo-Yong Lee.

Ethics declarations

Ethics Approval

Animal study was pre-reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) and performed under the Guideline for Laboratory Animal Care and Use of the Asan Institute for Life Sciences (Asan Medical Center; Seoul, Korea).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YM., Park, S., Choi, S.Y. et al. Clusterin Binding Modulates the Aggregation and Neurotoxicity of Amyloid-β(1–42). Mol Neurobiol 59, 6228–6244 (2022). https://doi.org/10.1007/s12035-022-02973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02973-6

Keywords

Navigation