Log in

Protective Effects of Curcumin Against Ischemia-Reperfusion Injury in the Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemia-reperfusion injury (I/R injury) is a common feature of ischemic stroke which occurs when blood supply is restored after a period of ischemia. Although stroke is an important cause of death in the world, effective therapeutic strategies aiming at improving neurological outcomes in this disease are lacking. Various studies have suggested the involvement of different mechanisms in the pathogenesis of I/R injury in the nervous system. These mechanisms include oxidative stress, platelet adhesion and aggregation, leukocyte infiltration, complement activation, blood-brain barrier (BBB) disruption, and mitochondria-mediated mechanisms. Curcumin, an active ingredient of turmeric, can affect all these pathways and exert neuroprotective activity culminating in the amelioration of I/R injury in the nervous system. In this review, we discuss the protective effects of curcumin against I/R injury in the nervous system and highlight the studies that have linked biological functions of curcumin and I/R injury improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Della-Morte D, Guadagni F, Palmirotta R, Testa G, Caso V, Paciaroni M, Abete P, Rengo F et al (2012) Genetics of ischemic stroke, stroke-related risk factors, stroke precursors and treatments. Pharmacogenomics 13(5):595–613

    CAS  PubMed  Google Scholar 

  2. Nour M, Scalzo F, Liebeskind DS (2012) Ischemia-reperfusion injury in stroke. Interv Neurol 1(3–4):185–199

    Google Scholar 

  3. Posada-Duque RA, Barreto GE, Cardona-Gomez GP (2014) Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 8:231

    PubMed  PubMed Central  Google Scholar 

  4. Sun X, Budas GR, Xu L, Barreto GE, Mochly-Rosen D, Giffard RG (2013) Selective activation of protein kinase C∊ in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice. J Neurosci Res 91(6):799–807

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Barreto G, E White R, Ouyang Y, Xu L, G Giffard R (2011) Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 11(2):164–173

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin L, Wang W, Yu Z (2016) Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem Pharmacol (Los Angel) 5(213):2167–0501.1000213

    Google Scholar 

  7. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarshoori JR, Asadi MH, Mohammadi MT (2014) Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat. Iran J Basic Med Sci 17(11):895

    PubMed  PubMed Central  Google Scholar 

  10. Yu H, Zhang Z-L, Chen J, Pei A, Hua F, Qian X, He J, Liu C-F et al (2012) Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS One 7(3):e33584

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Silachev DN, Plotnikov EY, Zorova LD, Pevzner IB, Sumbatyan NV, Korshunova GA, Gulyaev MV, Pirogov YA et al (2015) Neuroprotective effects of mitochondria-targeted plastoquinone and thymoquinone in a rat model of brain ischemia/reperfusion injury. Molecules 20(8):14487–14503

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Silva RF, Pogačnik L (2017) Food, polyphenols and neuroprotection. Neural Regen Res 12(4):582

    PubMed  PubMed Central  Google Scholar 

  13. Jivad N, Rabiei Z (2015) Review on herbal medicine on brain ischemia and reperfusion. Asian Pac J Trop Biomed 5(10):789–795

    Google Scholar 

  14. Momtazi AA, Sahebkar A (2016) Difluorinated curcumin: a promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des 22(28):4386–4397

    CAS  PubMed  Google Scholar 

  15. Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A (2016) Curcumin as a microRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol 171:1–38. https://doi.org/10.1007/112_2016_3

    Article  CAS  PubMed  Google Scholar 

  16. Rezaee R, Momtazi AA, Monemi A, Sahebkar A (2017) Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 117:218–227. https://doi.org/10.1016/j.phrs.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  17. Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors 43(3):331–346. https://doi.org/10.1002/biof.1344

    Article  CAS  PubMed  Google Scholar 

  18. Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, Salehi H, Peyvandi M et al (2016) Curcumin: A new candidate for melanoma therapy? Int J Cancer 139(8):1683-1695. https://doi.org/10.1002/ijc.30224

    CAS  PubMed  Google Scholar 

  19. Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H (2010) Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine 17(3–4):269–273. https://doi.org/10.1016/j.phymed.2009.05.020

    Article  CAS  PubMed  Google Scholar 

  20. Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendia LE, Majeed M, Sahebkar A (2018) Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: A randomized double-blind placebo-controlled trial. Drug Res (Stuttg). https://doi.org/10.1055/s-0044-101752

    CAS  PubMed  Google Scholar 

  21. Panahi Y, Khalili N, Sahebi E, Namazi S, Karimian MS, Majeed M, Sahebkar A (2017) Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology 25(1):25–31. https://doi.org/10.1007/s10787-016-0301-4

    Article  CAS  PubMed  Google Scholar 

  22. Sahebkar A (2013) Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors 39(2):197–208. https://doi.org/10.1002/biof.1062

    Article  CAS  PubMed  Google Scholar 

  23. Panahi Y, Khalili N, Hosseini MS, Abbasinazari M, Sahebkar A (2014) Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement Ther Med 22(5):851–857. https://doi.org/10.1016/j.ctim.2014.07.006

    Article  PubMed  Google Scholar 

  24. Simental-Mendia LE, Pirro M, Gotto AM Jr, Banach M, Atkin SL, Majeed M, Sahebkar A (2017) Lipid-modifying activity of curcuminoids: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr:1–10. https://doi.org/10.1080/10408398.2017.1396201

    PubMed  Google Scholar 

  25. Sahebkar A (2014) Curcuminoids for the management of hypertriglyceridaemia. Nat Rev Cardiol 11(2):123. https://doi.org/10.1038/nrcardio.2013.140-c1

    Article  CAS  PubMed  Google Scholar 

  26. Ganjali S, Blesso CN, Banach M, Pirro M, Majeed M, Sahebkar A (2017) Effects of curcumin on HDL functionality. Pharmacol Res 119:208–218. https://doi.org/10.1016/j.phrs.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  27. Momtazi AA, Banach M, Pirro M, Katsiki N, Sahebkar A (2017) Regulation of PCSK9 by nutraceuticals. Pharmacol Res 120:157–169. https://doi.org/10.1016/j.phrs.2017.03.023

    Article  CAS  PubMed  Google Scholar 

  28. Panahi Y, Alishiri GH, Parvin S, Sahebkar A (2016) Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J Diet Suppl 13(2):209–220. https://doi.org/10.3109/19390211.2015.1008611

    Article  CAS  PubMed  Google Scholar 

  29. Sahebkar A, Cicero AFG, Simental-Mendia LE, Aggarwal BB, Gupta SC (2016) Curcumin downregulates human tumor necrosis factor-alpha levels: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 107:234–242. https://doi.org/10.1016/j.phrs.2016.03.026

    Article  CAS  PubMed  Google Scholar 

  30. Sahebkar A, Henrotin Y (2016) Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med 17(6):1192–1202. https://doi.org/10.1093/pm/pnv024

    Article  PubMed  Google Scholar 

  31. Esmaily H, Sahebkar A, Iranshahi M, Ganjali S, Mohammadi A, Ferns G, Ghayour-Mobarhan M (2015) An investigation of the effects of curcumin on anxiety and depression in obese individuals: a randomized controlled trial. Chin J Integr Med 21(5):332–338. https://doi.org/10.1007/s11655-015-2160-z

    Article  CAS  PubMed  Google Scholar 

  32. Panahi Y, Badeli R, Karami GR, Sahebkar A (2015) Investigation of the efficacy of adjunctive therapy with bioavailability-boosted curcuminoids in major depressive disorder. Phytother Res 29(1):17–21. https://doi.org/10.1002/ptr.5211

    Article  CAS  PubMed  Google Scholar 

  33. Zabihi NA, Pirro M, Johnston TP, Sahebkar A (2017) Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? The data suggest yes. Curr Pharm Des 23(7):969–982. https://doi.org/10.2174/1381612822666161010115235

    Article  CAS  PubMed  Google Scholar 

  34. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendia LE, Sahebkar A (2017) Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res (Stuttg) 67(4):244–251. https://doi.org/10.1055/s-0043-100019

    Article  CAS  Google Scholar 

  35. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendia LE, Sahebkar A (2016) Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: a randomized controlled trial. J Cardiovasc Pharmacol 68(3):223–229. https://doi.org/10.1097/FJC.0000000000000406

    Article  CAS  PubMed  Google Scholar 

  36. Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, Sahebkar A (2016) Treatment of non-alcoholic fatty liver disease with curcumin: a randomized placebo-controlled trial. Phytother Res 30(9):1540–1548. https://doi.org/10.1002/ptr.5659

    Article  CAS  PubMed  Google Scholar 

  37. Panahi Y, Ghanei M, Hajhashemi A, Sahebkar A (2016) Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. J Diet Suppl 13(1):93–105. https://doi.org/10.3109/19390211.2014.952865

    Article  CAS  PubMed  Google Scholar 

  38. Lelli D, Sahebkar A, Johnston TP, Pedone C (2017) Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacol Res 115:133–148. https://doi.org/10.1016/j.phrs.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  39. Panahi Y, Ghanei M, Bashiri S, Hajihashemi A, Sahebkar A (2015) Short-term curcuminoid supplementation for chronic pulmonary complications due to sulfur mustard intoxication: positive results of a randomized double-blind placebo-controlled trial. Drug Res (Stuttg) 65(11):567–573. https://doi.org/10.1055/s-0034-1389986

    Article  CAS  Google Scholar 

  40. Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, Frautschy SA (2015) Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother 15(6):629–637. https://doi.org/10.1586/14737175.2015.1044981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ghandadi M, Sahebkar A (2017) Curcumin: an effective inhibitor of interleukin-6. Curr Pharm Des 23(6):921–931. https://doi.org/10.2174/1381612822666161006151605

    Article  CAS  PubMed  Google Scholar 

  42. Karimian MS, Pirro M, Majeed M, Sahebkar A (2017) Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev 33:55–63. https://doi.org/10.1016/j.cytogfr.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  43. Sahebkar A, Serban MC, Ursoniu S, Banach M (2015) Effect of curcuminoids on oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J Funct Foods 18:898–909. https://doi.org/10.1016/j.jff.2015.01.005

    Article  CAS  Google Scholar 

  44. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2017) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr:1–13. https://doi.org/10.1080/10408398.2017.1358139

    PubMed  Google Scholar 

  45. Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A (2015) Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin Nutr 34(6):1101–1108. https://doi.org/10.1016/j.clnu.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  46. Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018) Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J Cell Physiol 233(2):830–848. https://doi.org/10.1002/jcp.25778

    Article  CAS  PubMed  Google Scholar 

  47. Ganjali S, Sahebkar A, Mahdipour E, Jamialahmadi K, Torabi S, Akhlaghi S, Ferns G, Parizadeh SM et al (2014) Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. ScientificWorldJournal 2014:898361. https://doi.org/10.1155/2014/898361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57(01):1–7

    CAS  PubMed  Google Scholar 

  49. Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: review. Phytother Res. https://doi.org/10.1002/ptr.6054

    CAS  PubMed  Google Scholar 

  50. Jeong CW, Yoo KY, Lee SH, Jeong HJ, Lee CS, Kim SJ (2012) Curcumin protects against regional myocardial ischemia/reperfusion injury through activation of RISK/GSK-3beta and inhibition of p38 MAPK and JNK. J Cardiovasc Pharmacol Ther 17(4):387–394. https://doi.org/10.1177/1074248412438102

    Article  CAS  PubMed  Google Scholar 

  51. Kim YS, Kwon JS, Cho YK, Jeong MH, Cho JG, Park JC, Kang JC, Ahn Y (2012) Curcumin reduces the cardiac ischemia-reperfusion injury: involvement of the toll-like receptor 2 in cardiomyocytes. J Nutr Biochem 23(11):1514–1523. https://doi.org/10.1016/j.jnutbio.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  52. Sahebkar A (2010) Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril 94(5):e75–e76; author reply e77. https://doi.org/10.1016/j.fertnstert.2010.07.1071

    Article  PubMed  Google Scholar 

  53. Altinay S, Cabalar M, Isler C, Yildirim F, Celik DS, Zengi O, Tas A, Gulcubuk A (2017) Is chronic curcumin supplementation neuroprotective against ischemia for antioxidant activity, neurological deficit, or neuronal apoptosis in an experimental stroke model? Turk Neurosurg 27(4):537–545

  54. Kalani A, Chaturvedi P, Kamat PK, Maldonado C, Bauer P, Joshua IG, Tyagi SC, Tyagi N (2016) Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol 79:360–369

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kelly-Cobbs AI, Prakash R, Li W, Pillai B, Hafez S, Coucha M, Johnson MH, Ogbi SN et al (2013) Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes. Am J Phys Heart Circ Phys 304(6):H806–H815

    CAS  Google Scholar 

  56. Heiss W-D, Thiel A, Grond M, Graf R (1999) Which targets are relevant for therapy of acute ischemic stroke? Stroke 30(7):1486–1489

    CAS  PubMed  Google Scholar 

  57. Lee J-M, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106(6):723

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Akar İ, İnce İ, Arici A, Benli İ, Aslan C, Şenol S, Demir O, Altunkas F et al (2017) The protective effect of curcumin on a spinal cord ischemia-reperfusion injury model. Ann Vasc Surg 42:285–292

    PubMed  Google Scholar 

  59. Baird A, Donnan GA, Austin M, Fitt GJ, Davis S, McKay W (1994) Reperfusion after thrombolytic therapy in ischemic stroke measured by single-photon emission computed tomography. Stroke 25(1):79–85

    CAS  PubMed  Google Scholar 

  60. Del Zoppo GJ, Saver JL, Jauch EC, Adams HP (2009) Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator. Stroke 40(8):2945–2948

    PubMed  PubMed Central  Google Scholar 

  61. Yang G-Y, Betz AL (1994) Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 25(8):1658–1664

    CAS  PubMed  Google Scholar 

  62. Kuroda S, Siesjö B (1997) Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin Neurosci 4(4):199–212

    CAS  PubMed  Google Scholar 

  63. Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17(10):1048–1056

    CAS  PubMed  Google Scholar 

  64. Carden DL, Granger DN (2000) Pathophysiology of ischaemia–reperfusion injury. J Pathol 190(3):255–266

    CAS  PubMed  Google Scholar 

  65. Pan J, Konstas A-A, Bateman B, Ortolano GA, Pile-Spellman J (2007) Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology 49(2):93–102

    PubMed  Google Scholar 

  66. Massberg S, Enders G, Leiderer R, Eisenmenger S, Vestweber D, Krombach F, Messmer K (1998) Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood 92(2):507–515

    CAS  PubMed  Google Scholar 

  67. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M (2013) Molecular mechanisms of ischemia–reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23

    CAS  PubMed  Google Scholar 

  68. Yamato M, Egashira T, Utsumi H (2003) Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med 35(12):1619–1631

    CAS  PubMed  Google Scholar 

  69. Koc ER, Gökce EC, Sönmez MA, Namuslu M, Gökce A, Bodur AS (2015) Borax partially prevents neurologic disability and oxidative stress in experimental spinal cord ischemia/reperfusion injury. J Stroke Cerebrovasc Dis 24(1):83–90

    PubMed  Google Scholar 

  70. Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27(6):1124–1129

    CAS  PubMed  Google Scholar 

  71. Zimmerman BJ, Granger DN (1992) Reperfusion injury. Surg Clin North Am 72(1):65–83

    CAS  PubMed  Google Scholar 

  72. Green C, Gower J, Healing G, Cotterill L, Fuller B, Simpkin S (1989) The importance of iron, calcium and free radicals in reperfusion injury: an overview of studies in ischaemic rabbit kidneys. Free Radic Res Commun 7(3–6):255–264

    CAS  PubMed  Google Scholar 

  73. Orrenius S, Burkitt MJ, Kass GE, Dypbukt JM, Nicotera P (1992) Calcium ions and oxidative cell injury. Ann Neurol 32(S1):S33–S42

    CAS  PubMed  Google Scholar 

  74. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21(1):2–14

    CAS  PubMed  Google Scholar 

  76. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    CAS  PubMed  Google Scholar 

  77. Gorsuch WB, Chrysanthou E, Schwaeble WJ, Stahl GL (2012) The complement system in ischemia–reperfusion injuries. Immunobiology 217(11):1026–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Barnum SR (1999) Inhibition of complement as a therapeutic approach in inflammatory central nervous system (CNS) disease. Mol Med 5(9):569

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nieminen A-L (2003) Apoptosis and necrosis in health and disease: role of mitochondria. Int Rev Cytol 224:29–55

    CAS  PubMed  Google Scholar 

  80. Khatri R, McKinney AM, Swenson B, Janardhan V (2012) Blood–brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 79(13 Supplement 1):S52–S57

    PubMed  Google Scholar 

  81. Sage J, Van Uitert R, Duffy T (1984) Early changes in blood brain barrier permeability to small molecules after transient cerebral ischemia. Stroke 15(1):46–50

    CAS  PubMed  Google Scholar 

  82. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71(2):107–113. https://doi.org/10.1016/j.neures.2011.06.004

    Article  PubMed  Google Scholar 

  83. Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, Jurado Coronel JC, Capani F et al (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211. https://doi.org/10.3389/fncel.2014.00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640. https://doi.org/10.1038/nrn1722

    Article  CAS  PubMed  Google Scholar 

  85. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7(4):494–506. https://doi.org/10.1016/j.nurt.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Barreto GE, White RE, Xu L, Palm CJ, Giffard RG (2012) Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol 238(2):284–296. https://doi.org/10.1016/j.expneurol.2012.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, Barreto GE (2014) Tibolone protects T98G cells from glucose deprivation. J Steroid Biochem Mol Biol 144(Pt B):294–303. https://doi.org/10.1016/j.jsbmb.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  88. Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 433:35–46. https://doi.org/10.1016/j.mce.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  89. Baez E, Echeverria V, Cabezas R, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Protection by neuroglobin expression in brain pathologies. Front Neurol 7:146. https://doi.org/10.3389/fneur.2016.00146

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cabezas R, Vega-Vela NE, Gonzalez-Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, Barreto GE (2018) PDGF-BB preserves mitochondrial morphology, attenuates ROS production, and upregulates neuroglobin in an astrocytic model under rotenone insult. Mol Neurobiol 55(4):3085–3095. https://doi.org/10.1007/s12035-017-0567-6

    Article  CAS  PubMed  Google Scholar 

  91. Garzon D, Cabezas R, Vega N, Avila-Rodriguez M, Gonzalez J, Gomez RM, Echeverria V, Aliev G et al (2016) Novel approaches in astrocyte protection: from experimental methods to computational approaches. J Mol Neurosci 58(4):483–492. https://doi.org/10.1007/s12031-016-0719-6

    Article  CAS  PubMed  Google Scholar 

  92. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, De Lillo A, Laino L et al (2015) Biological and therapeutic activities, and anticancer properties of curcumin. Experimental and Therapeutic Medicine 10(5):1615–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087

    CAS  PubMed  Google Scholar 

  94. Jayaprakasha G, Rao LJM, Sakariah K (2005) Chemistry and biological activities of C. longa. Trends Food Sci Technol 16(12):533–548

    CAS  Google Scholar 

  95. Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12(3):332–347

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Singh S (2007) From exotic spice to modern drug? Cell 130(5):765–768

    CAS  PubMed  Google Scholar 

  97. Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39(3):283–299

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Scotter MJ (2011) Methods for the determination of European Union-permitted added natural colours in foods: a review. Food Addit Contam 28(5):527–596

    CAS  Google Scholar 

  99. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64(04):353–356

    CAS  PubMed  Google Scholar 

  100. Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ et al (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7(7):1894–1900

    CAS  PubMed  Google Scholar 

  101. Liu A, Lou H, Zhao L, Fan P (2006) Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal 40(3):720–727

    CAS  PubMed  Google Scholar 

  102. Yu H, Huang Q (2012) Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem 60(21):5373–5379

    CAS  PubMed  Google Scholar 

  103. Epstein J, Sanderson IR, MacDonald TT (2010) Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr 103(11):1545–1557

    CAS  PubMed  Google Scholar 

  104. Mandeville J-S, Froehlich E, Tajmir-Riahi H (2009) Study of curcumin and genistein interactions with human serum albumin. J Pharm Biomed Anal 49(2):468–474

    CAS  PubMed  Google Scholar 

  105. Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

  106. Ferreira LA, Henriques OB, Andreoni AA, Vital GR, Campos MM, Habermehl GG, de Moraes VL (1992) Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (Zingiberaceae). Toxicon 30(10):1211–1218

    CAS  PubMed  Google Scholar 

  107. Teow S-Y, Liew K, Ali SA, Khoo AS-B, Peh S-C (2016) Antibacterial action of curcumin against Staphylococcus aureus: a brief review. J Trop Med 2016:1–10

    Google Scholar 

  108. Ali A, Banerjea AC (2016) Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci Rep 6:27539

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D'Alessandro N (2005) Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 224(1):53–65

    CAS  PubMed  Google Scholar 

  110. Jacob A, Wu R, Zhou M, Wang P (2007) Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ activation. PPAR Res 2007:1–5

    Google Scholar 

  111. Llurba-Montesino N, Kaiser M, Brun R, Schmidt TJ (2015) Search for antiprotozoal activity in herbal medicinal preparations; new natural leads against neglected tropical diseases. Molecules 20(8):14118–14138

    PubMed  PubMed Central  Google Scholar 

  112. Ismail AFM, Salem AA (2016) Renoprotective effect of curcumin on acetaminophen-induced nephrotoxicity in rats. J Chem Pharm Res 8(2):773–779

    CAS  Google Scholar 

  113. Dcodhar S, Sethi R, Srimal R (2013) Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 138(1):632–634

  114. **ao J, Sheng X, Zhang X, Guo M, Ji X (2016) Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. Drug Design, Development and Therapy 10:1267

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Thangapazham RL, Sharma A, Maheshwari RK (2007) Beneficial role of curcumin in skin diseases. Adv Exp Med Biol 595:343–57

  116. Accurso F (2004) Curcumin and cystic fibrosis. J Pediatr Gastroenterol Nutr 39(3):235

    PubMed  Google Scholar 

  117. Buhrmann C, Mobasheri A, Busch F, Aldinger C, Stahlmann R, Montaseri A, Shakibaei M (2011) Curcumin modulates nuclear factor κB (NF-κB)-mediated inflammation in human tenocytes in vitro role of the phosphatidylinositol 3-kinase/akt pathway. J Biol Chem 286(32):28556–28566

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ak T, Gülçin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37

    CAS  PubMed  Google Scholar 

  119. Shukla PK, Khanna VK, Ali MM, Khan MY, Srimal RC (2008) Anti-ischemic effect of curcumin in rat brain. Neurochem Res 33(6):1036–1043

    CAS  PubMed  Google Scholar 

  120. Huang H-C, Xu K, Jiang Z-F (2012) Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J Alzheimers Dis 32(4):981–996

    CAS  PubMed  Google Scholar 

  121. Saha L, Chakrabarti A, Kumari S, Bhatia A, Banerjee D (2016) Antiapoptotic and neuroprotective role of Curcumin in Pentylenetetrazole (PTZ) induced kindling model in rat. Indian J Exp Biol 54(2):133–141

  122. Acar A, Akil E, Alp H, Evliyaoglu O, Kibrisli E, Inal A, Unan F, Tasdemir N (2012) Oxidative damage is ameliorated by curcumin treatment in brain and sciatic nerve of diabetic rats. Int J Neurosci 122(7):367–372

    CAS  PubMed  Google Scholar 

  123. Tizabi Y, Hurley LL, Qualls Z, Akinfiresoye L (2014) Relevance of the anti-inflammatory properties of curcumin in neurodegenerative diseases and depression. Molecules 19(12):20864–20879

    PubMed  PubMed Central  Google Scholar 

  124. Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Adv Exp Med Biol 595:197–212

  125. Awasthi H, Tota S, Hanif K, Nath C, Shukla R (2010) Protective effect of curcumin against intracerebral streptozotocin induced impairment in memory and cerebral blood flow. Life Sci 86(3–4):87–94

    CAS  PubMed  Google Scholar 

  126. Chen H-F, Su H-M (2013) Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic–pituitary–adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life. J Nutr Biochem 24(1):70–80

    CAS  PubMed  Google Scholar 

  127. Bhatia HS, Agrawal R, Sharma S, Huo Y-X, Ying Z, Gomez-Pinilla F (2011) Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS One 6(12):e28451

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu A, Noble EE, Tyagi E, Ying Z, Zhuang Y, Gomez-Pinilla F (2015) Curcumin boosts DHA in the brain: implications for the prevention of anxiety disorders. Biochim Biophys Acta 1852(5):951–961

    CAS  PubMed  Google Scholar 

  129. Matteucci A, Cammarota R, Paradisi S, Varano M, Balduzzi M, Leo L, Bellenchi GC, De Nuccio C et al (2011) Curcumin protects against NMDA-induced toxicity: a possible role for NR2A subunit. Invest Ophthalmol Vis Sci 52(2):1070–1077

    CAS  PubMed  Google Scholar 

  130. Matteucci A, Frank C, Domenici M, Balduzzi M, Paradisi S, Carnovale-Scalzo G, Scorcia G, Malchiodi-Albedi F (2005) Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-D-aspartate-induced intracellular Ca 2+ increase. Exp Brain Res 167(4):641–648

    CAS  PubMed  Google Scholar 

  131. Wu A, Ying Z, Gomez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197(2):309–317

    CAS  PubMed  Google Scholar 

  132. Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC, Ogle WO (2007) Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 1162:9–18

    CAS  PubMed  Google Scholar 

  133. Frautschy S, Hu W, Kim P, Miller S, Chu T, Harris-White M, Cole G (2001) Phenolic anti-inflammatory antioxidant reversal of Aβ-induced cognitive deficits and neuropathology. Neurobiol Aging 22(6):993–1005

    CAS  PubMed  Google Scholar 

  134. Ono H, Sakamoto A, Sakura N (2000) Plasma total glutathione concentrations in epileptic patients taking anticonvulsants. Clin Chim Acta 298(1–2):135–143

    CAS  PubMed  Google Scholar 

  135. Lopresti AL, Hood SD, Drummond PD (2012) Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 26(12):1512–1524

    CAS  PubMed  Google Scholar 

  136. Lopresti AL, Drummond PD (2017) Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: a randomised, double-blind, placebo-controlled study. J Affect Disord 207:188–196

    CAS  PubMed  Google Scholar 

  137. Wang R, Li Y-H, Xu Y, Li Y-B, Wu H-L, Guo H, Zhang J-Z, Zhang J-J et al (2010) Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog Neuro-Psychopharmacol Biol Psychiatry 34(1):147–153

    CAS  Google Scholar 

  138. Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2(2):131–136

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ammon H, Safayhi H, Mack T, Sabieraj J (1993) Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethnopharmacol 38(2–3):105–112

    Google Scholar 

  140. Soni K, Kuttan R (1992) Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 36:273–273

    CAS  PubMed  Google Scholar 

  141. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R et al (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280(7):5892–5901

    CAS  PubMed  Google Scholar 

  142. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39(10):1119–1125

    CAS  PubMed  Google Scholar 

  143. Hegde ML, Hegde PM, Holthauzen LM, Hazra TK, Rao JK, Mitra S (2010) Specific inhibition of neil-initiated repair of oxidized base damage in human genome by copper and iron and protection using curcumin: potential etiological linkage to neurodegenerative diseases. Alzheimers Dement 6(4):S383–S384

    Google Scholar 

  144. Rao KS (2007) DNA repair in aging rat neurons. Neuroscience 145(4):1330–1340

    CAS  PubMed  Google Scholar 

  145. Grin I, Konorovsky P, Nevinsky G, Zharkov D (2009) Heavy metal ions affect the activity of DNA glycosylases of the fpg family. Biochem Mosc 74(11):1253

    CAS  Google Scholar 

  146. Funk JL, Frye JB, Davis-Gorman G, Spera AL, Bernas MJ, Witte MH, Weinand ME, Timmermann BN et al (2013) Curcuminoids limit neutrophil-mediated reperfusion injury in experimental stroke by targeting the endothelium. Microcirculation 20(6):544–554

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Dohare P, Garg P, Jain V, Nath C, Ray M (2008) Dose dependence and therapeutic window for the neuroprotective effects of curcumin in thromboembolic model of rat. Behav Brain Res 193(2):289–297

    CAS  PubMed  Google Scholar 

  148. Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74(8):969–985

    CAS  PubMed  Google Scholar 

  149. Tyagi N, Qipshidze N, Munjal C, Vacek JC, Metreveli N, Givvimani S, Tyagi SC (2012) Tetrahydrocurcumin ameliorates homocysteinylated cytochrome-c mediated autophagy in hyperhomocysteinemia mice after cerebral ischemia. J Mol Neurosci 47(1):128–138

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu S, Cao Y, Qu M, Zhang Z, Feng L, Ye Z, **ao M, Hou ST et al (2016) Curcumin protects against stroke and increases levels of Notch intracellular domain. Neurol Res 38(6):553–559

    CAS  PubMed  Google Scholar 

  151. Zhang B, Wang R-z, Z-g L, Song Y, Yao Y (2009) Neurogenesis by activation of inherent neural stem cells in the rat hippocampus after cerebral infarction. Chin Med Sci J 24(1):41–45

    PubMed  Google Scholar 

  152. Adelson JD, Barreto GE, Xu L, Kim T, Brott BK, Ouyang Y-B, Naserke T, Djurisic M et al (2012) Neuroprotection from stroke in the absence of MHCI or PirB. Neuron 73(6):1100–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Barreto GE, Sun X, Xu L, Giffard RG (2011) Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One 6(11):e27881

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB, Rottinghaus GE, MacDonald RS, Miller DK et al (2005) Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82(1):138–148

    CAS  PubMed  Google Scholar 

  155. Ahmad N, Umar S, Ashafaq M, Akhtar M, Iqbal Z, Samim M, Ahmad FJ (2013) A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma 250(6):1327–1338

    CAS  PubMed  Google Scholar 

  156. Kakkar V, Muppu SK, Chopra K, Kaur IP (2013) Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm 85(3):339–345

    CAS  PubMed  Google Scholar 

  157. Liu Z-Q, **ng S-S, Zhang W (2013) Neuroprotective effect of curcumin on spinal cord in rabbit model with ischemia/reperfusion. The Journal of Spinal Cord Medicine 36(2):147–152

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kurt G, Yildirim Z, Cemil B, Celtikci E, Kaplanoglu GT (2014) Effects of curcumin on acute spinal cord ischemia-reperfusion injury in rabbits. J Neurosurg Spine 20(4):464–470

    PubMed  Google Scholar 

  159. Gokce EC, Kahveci R, Gokce A, Sargon MF, Kisa U, Aksoy N, Cemil B, Erdogan B (2016) Curcumin attenuates inflammation, oxidative stress, and ultrastructural damage induced by spinal cord ischemia–reperfusion injury in rats. J Stroke Cerebrovasc Dis 25(5):1196–1207

    PubMed  Google Scholar 

  160. Lin M-S, Sun Y-Y, Chiu W-T, Hung C-C, Chang C-Y, Shie F-S, Tsai S-H, Lin J-W et al (2011) Curcumin attenuates the expression and secretion of RANTES after spinal cord injury in vivo and lipopolysaccharide-induced astrocyte reactivation in vitro. J Neurotrauma 28(7):1259–1269

    PubMed  Google Scholar 

  161. Berner MD, Sura ME, Alves BN, Hunter KW Jr (2005) IFN-γ primes macrophages for enhanced TNF-α expression in response to stimulatory and non-stimulatory amounts of microparticulate β-glucan. Immunol Lett 98(1):115–122

    CAS  PubMed  Google Scholar 

  162. Raza SS, Khan MM, Ahmad A, Ashafaq M, Khuwaja G, Tabassum R, Javed H, Siddiqui MS et al (2011) Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Res 1420:93–105

    CAS  PubMed  Google Scholar 

  163. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, Limtrakul P, Badmaev V et al (2007) Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28(8):1765–1773

    CAS  PubMed  Google Scholar 

  164. Sun M, Zhao Y, Gu Y, Xu C (2009) Inhibition of nNOS reduces ischemic cell death through down-regulating calpain and caspase-3 after experimental stroke. Neurochem Int 54(5–6):339–346

    CAS  PubMed  Google Scholar 

  165. Jayaprakasha G, Rao LJ, Sakariah K (2006) Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem 98(4):720–724

    CAS  Google Scholar 

  166. Jia G, Tan B, Ma J, Zhang L, ** X, Li C (2017) Prdx6 upregulation by curcumin attenuates ischemic oxidative damage via SP1 in rats after stroke. Biomed Res Int 2017:1–9

    Google Scholar 

  167. Avci G, Kadioglu H, Sehirli AO, Bozkurt S, Guclu O, Arslan E, Muratli SK (2012) Curcumin protects against ischemia/reperfusion injury in rat skeletal muscle. J Surg Res 172(1):e39–e46

    CAS  PubMed  Google Scholar 

  168. Wu J-x, Zhang L-y, Chen Y-l, Yu S-s, Zhao Y, Zhao J (2015) Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation. Neural Regen Res 10(3):481

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Miao Y, Zhao S, Gao Y, Wang R, Wu Q, Wu H, Luo T (2016) Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res Bull 121:9–15

    CAS  PubMed  Google Scholar 

  170. Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, Zhao Y (2010) Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 35(3):374–379

    CAS  PubMed  Google Scholar 

  171. Kroemer G (2003) Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304(3):433–435

    CAS  PubMed  Google Scholar 

  172. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342

    CAS  PubMed  Google Scholar 

  173. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    CAS  PubMed  Google Scholar 

  174. Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X, Deng Y, Zhang Y et al (2014) Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res 39(7):1322–1331

    CAS  PubMed  Google Scholar 

  175. DeGracia DJ, Montie HL (2004) Cerebral ischemia and the unfolded protein response. J Neurochem 91(1):1–8

    CAS  PubMed  Google Scholar 

  176. Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE (2017) Astrocytes and endoplasmic reticulum stress: a bridge between obesity and neurodegenerative diseases. Prog Neurobiol 158:45–68

    PubMed  Google Scholar 

  177. Avila MF, Cabezas R, Torrente D, Gonzalez J, Morales L, Alvarez L, Capani F, Barreto GE (2013) Novel interactions of GRP78: UPR and estrogen responses in the brain. Cell Biol Int 37(6):521–532

    CAS  PubMed  Google Scholar 

  178. Zhu H, Fan Y, Sun H, Chen L, Man X (2017) Curcumin inhibits endoplasmic reticulum stress induced by cerebral ischemia-reperfusion injury in rats. Experimental and Therapeutic Medicine 14(5):4047–4052

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3(11):E255

    CAS  PubMed  Google Scholar 

  180. Li G, Mongillo M, Chin K-T, Harding H, Ron D, Marks AR, Tabas I (2009) Role of ERO1-α–mediated stimulation of inositol 1, 4, 5-triphosphate receptor activity in endoplasmic reticulum stress–induced apoptosis. J Cell Biol 186(6):783–792

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Veltkamp R, Siebing DA, Sun L, Heiland S, Bieber K, Marti HH, Nagel S, Schwab S et al (2005) Hyperbaric oxygen reduces blood–brain barrier damage and edema after transient focal cerebral ischemia. Stroke 36(8):1679–1683

    PubMed  Google Scholar 

  182. Luo CX, Zhu XJ, Zhang AX, Wang W, Yang XM, Liu SH, Han X, Sun J et al (2005) Blockade of L-type voltage-gated Ca2+ channel inhibits ischemia-induced neurogenesis by down-regulating iNOS expression in adult mouse. J Neurochem 94(4):1077–1086

    CAS  PubMed  Google Scholar 

  183. Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. Eur J Pharmacol 561(1–3):54–62

    CAS  PubMed  Google Scholar 

  184. Zhu D-Y, Li R, Liu G-Q, Hua W-Y (2000) Tumor necrosis factor alpha enhances the cytotoxicity induced by nitric oxide in cultured cerebral endothelial cells. Life Sci 66(14):1325–1335

    CAS  PubMed  Google Scholar 

  185. Pan M-H, Lin-Shiau S-Y, Lin J-K (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IκB kinase and NFκB activation in macrophages. Biochem Pharmacol 60(11):1665–1676

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavarsad, K., Barreto, G.E., Hadjzadeh, MAR. et al. Protective Effects of Curcumin Against Ischemia-Reperfusion Injury in the Nervous System. Mol Neurobiol 56, 1391–1404 (2019). https://doi.org/10.1007/s12035-018-1169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1169-7

Keywords

Navigation