Log in

Succinobucol, a Non-Statin Hypocholesterolemic Drug, Prevents Premotor Symptoms and Nigrostriatal Neurodegeneration in an Experimental Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by non-motor and motor disabilities. This study investigated whether succinobucol (SUC) could mitigate nigrostriatal injury caused by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice. Moreover, the effects of SUC against MPTP-induced behavioral impairments and neurochemical changes were also evaluated. The quantification of tyrosine hydroxylase-positive (TH+) cells was also performed in primary mesencephalic cultures to evaluate the effects of SUC against 1-methyl-4-phenylpyridinium (MPP+) toxicity in vitro. C57BL/6 mice were treated with SUC (10 mg/kg/day, intragastric (i.g.)) for 30 days, and thereafter, animals received MPTP infusion (1 mg/nostril) and SUC treatment continued for additional 15 days. MPTP-infused animals displayed significant non-motor symptoms including olfactory and short-term memory deficits evaluated in the olfactory discrimination, social recognition, and water maze tasks. These behavioral impairments were accompanied by inhibition of mitochondrial NADH dehydrogenase activity (complex I), as well as significant decrease of TH and dopamine transporter (DAT) immunoreactivity in the substantia nigra pars compacta and striatum. Although SUC treatment did not rescue NADH dehydrogenase activity inhibition, it was able to blunt MPTP-induced behavioral impairments and prevented the decrease in TH and DAT immunoreactivities in substantia nigra (SN) and striatum. SUC also suppressed striatal astroglial activation and increased interleukin-6 levels in MPTP-intoxicated mice. Furthermore, SUC significantly prevented the loss of TH+ neurons induced by MPP+ in primary mesencephalic cultures. These results provide new evidence that SUC treatment counteracts early non-motor symptoms and neurodegeneration/neuroinflammation in the nigrostriatal pathway induced by intranasal MPTP administration in mice by modulating events downstream to the mitochondrial NADH dehydrogenase inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–22. doi:10.1126/science.1087753

    Article  CAS  PubMed  Google Scholar 

  2. Hirsch EC, Jenner P, Przedborski S (2013) Pathogenesis of Parkinson’s disease. Mov Disord 28:24–30. doi:10.1002/mds.25032

    Article  CAS  PubMed  Google Scholar 

  3. Klockgether T (2004) Parkinson’s disease: clinical aspects. Cell Tissue Res 318:115–20. doi:10.1007/s00441-004-0975-6

    Article  PubMed  Google Scholar 

  4. De Jesus-Cortes H, Xu P, Drawbridge J, Estill SJ, Huntington P, Tran S, Britt J, Tesla R, Morlock L, Naidoo J, Melito LM, Wang G, Williams NS, Ready JM, McKnight SL, Pieper AA (2012) Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease. Proc Natl Acad Sci U S A 109:17010–5. doi:10.1073/pnas.1213956109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aarsland D, Taylor JP, Weintraub D (2014) Psychiatric issues in cognitive impairment. Mov Disord 29:651–62. doi:10.1002/mds.25873

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lima MM, Martins EF, Delattre AM, Proenca MB, Mori MA, Carabelli B, Ferraz AC (2012) Motor and non-motor features of Parkinson’s disease—a review of clinical and experimental studies. CNS Neurol Disord Drug Targets 11:439–49

    Article  CAS  PubMed  Google Scholar 

  7. Prediger RD, Aguiar AS Jr, Rojas-Mayorquin AE, Figueiredo CP, Matheus FC, Ginestet L, Chevarin C, Bel ED, Mongeau R, Hamon M, Lanfumey L, Raisman-Vozari R (2010) Single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson’s disease. Neurotox Res 17:114–29. doi:10.1007/s12640-009-9087-0

    Article  CAS  PubMed  Google Scholar 

  8. Committee GPsdSS (2002) Factors impacting on quality of life in Parkinson’s disease: results from an international survey. Mov Disord 17:60–7

    Article  Google Scholar 

  9. Emre M (2003) Dementia associated with Parkinson’s disease. Lancet Neurol 2:229–37

    Article  CAS  PubMed  Google Scholar 

  10. Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8

    Article  CAS  PubMed  Google Scholar 

  11. Tolosa E, Compta Y, Gaig C (2007) The premotor phase of Parkinson’s disease. Parkinsonism Relat Disord 13(Suppl):S2–7. doi:10.1016/j.parkreldis.2007.06.007

    Article  PubMed  Google Scholar 

  12. Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–19. doi:10.1038/nrn1868

    Article  CAS  PubMed  Google Scholar 

  13. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  14. Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401. doi:10.1016/S0165-6147(03)00176-7

    Article  CAS  PubMed  Google Scholar 

  15. Nagatsu T, Mogi M, Ichinose H and Togari A (2000) Cytokines in Parkinson’s disease. J Neural Transm Suppl:143-51.

  16. Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11:999–1016

    Article  CAS  PubMed  Google Scholar 

  17. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–9. doi:10.1038/70978

    Article  CAS  PubMed  Google Scholar 

  18. Wang WF, Wu SL, Liou YM, Wang AL, Pawlak CR, Ho YJ (2009) MPTP lesion causes neuroinflammation and deficits in object recognition in Wistar rats. Behav Neurosci 123:1261–70. doi:10.1037/a0017401

    Article  PubMed  Google Scholar 

  19. Franco-Iborra S, Vila M and Perier C (2015) The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist. doi: 10.1177/1073858415574600

  20. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–80

    Article  CAS  PubMed  Google Scholar 

  21. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80:4546–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134:57–66. doi:10.1016/j.molbrainres.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  23. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–23. doi:10.1002/ana.410260606

    Article  PubMed  Google Scholar 

  24. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  CAS  PubMed  Google Scholar 

  25. Ransom BR, Kunis DM, Irwin I, Langston JW (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci Lett 75:323–8

    Article  CAS  PubMed  Google Scholar 

  26. Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–34. doi:10.1038/35072550

    Article  CAS  PubMed  Google Scholar 

  27. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365–75. doi:10.1038/nrn1100

    Article  CAS  PubMed  Google Scholar 

  28. Prediger RD, Batista LC, Medeiros R, Pandolfo P, Florio JC, Takahashi RN (2006) The risk is in the air: intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s disease. Exp Neurol 202:391–403. doi:10.1016/j.expneurol.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  29. Prediger RD, Aguiar AS Jr, Moreira EL, Matheus FC, Castro AA, Walz R, De Bem AF, Latini A, Tasca CI, Farina M, Raisman-Vozari R (2011) The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a new rodent model to test palliative and neuroprotective agents for Parkinson’s disease. Curr Pharm Des 17:489–507

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh A, Roy A, Matras J, Brahmachari S, Gendelman HE, Pahan K (2009) Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci 29:13543–56. doi:10.1523/JNEUROSCI.4144-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roy A, Pahan K (2011) Prospects of statins in Parkinson disease. Neuroscientist 17:244–55. doi:10.1177/1073858410385006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan J, Xu Y, Zhu C, Zhang L, Wu A, Yang Y, **ong Z, Deng C, Huang XF, Yenari MA, Yang YG, Ying W, Wang Q (2011) Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the association with anti-inflammatory responses. PLoS One 6:e20945. doi:10.1371/journal.pone.0020945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bar-On P, Crews L, Koob AO, Mizuno H, Adame A, Spencer B, Masliah E (2008) Statins reduce neuronal alpha-synuclein aggregation in in vitro models of Parkinson’s disease. J Neurochem 105:1656–67. doi:10.1111/j.1471-4159.2008.05254.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Q, Yan J, Chen X, Li J, Yang Y, Weng J, Deng C, Yenari MA (2011) Statins: multiple neuroprotective mechanisms in neurodegenerative diseases. Exp Neurol 230:27–34. doi:10.1016/j.expneurol.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  35. Colle D, Santos DB, Moreira EL, Hartwig JM, dos Santos AA, Zimmermann LT, Hort MA, Farina M (2013) Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS One 8:e67658. doi:10.1371/journal.pone.0067658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santos DB, Colle D, Moreira EL, Peres KC, Ribeiro RP, dos Santos AA, de Oliveira J, Hort MA, de Bem AF, Farina M (2015) Probucol mitigates streptozotocin-induced cognitive and biochemical changes in mice. Neuroscience 284:590–600. doi:10.1016/j.neuroscience.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  37. Santos DB, Peres KC, Ribeiro RP, Colle D, dos Santos AA, Moreira EL, Souza DO, Figueiredo CP, Farina M (2012) Probucol, a lipid-lowering drug, prevents cognitive and hippocampal synaptic impairments induced by amyloid beta peptide in mice. Exp Neurol 233:767–75. doi:10.1016/j.expneurol.2011.11.036

    Article  CAS  PubMed  Google Scholar 

  38. Colle D, Santos DB, Hartwig JM, Godoi M, Braga AL, Farina M (2013) Succinobucol versus probucol: higher efficiency of succinobucol in mitigating 3-NP-induced brain mitochondrial dysfunction and oxidative stress in vitro. Mitochondrion 13:125–33. doi:10.1016/j.mito.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  39. Poirier J, Miron J, Picard C, Gormley P, Theroux L, Breitner J, Dea D (2014) Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging 35(Suppl 2):S3–10. doi:10.1016/j.neurobiolaging.2014.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Endo K, Saiki A, Yamaguchi T, Sakuma K, Sasaki H, Ban N, Kawana H, Nagayama D, Nagumo A, Ohira M, Oyama T, Murano T, Miyashita Y, Yamamura S, Suzuki Y, Shirai K, Tatsuno I (2013) Probucol suppresses initiation of chronic hemodialysis therapy and renal dysfunction-related death in diabetic nephropathy patients: Sakura study. J Atheroscler Thromb 20:494–502

    Article  CAS  PubMed  Google Scholar 

  41. Kasai T, Miyauchi K, Kubota N, Kajimoto K, Amano A, Daida H (2012) Probucol therapy improves long-term (>10-year) survival after complete revascularization: a propensity analysis. Atherosclerosis 220:463–9. doi:10.1016/j.atherosclerosis.2011.09.051

    Article  CAS  PubMed  Google Scholar 

  42. Yamashita S, Hbujo H, Arai H, Harada-Shiba M, Matsui S, Fukushima M, Saito Y, Kita T, Matsuzawa Y (2008) Long-term probucol treatment prevents secondary cardiovascular events: a cohort study of patients with heterozygous familial hypercholesterolemia in Japan. J Atheroscler Thromb 15:292–303

    Article  PubMed  Google Scholar 

  43. Kunsch C, Luchoomun J, Grey JY, Olliff LK, Saint LB, Arrendale RF, Wasserman MA, Saxena U, Medford RM (2004) Selective inhibition of endothelial and monocyte redox-sensitive genes by AGI-1067: a novel antioxidant and anti-inflammatory agent. J Pharmacol Exp Ther 308:820–9. doi:10.1124/jpet.103.059733

    Article  CAS  PubMed  Google Scholar 

  44. Muldrew KM, Franks AM (2009) Succinobucol: review of the metabolic, antiplatelet and cardiovascular effects. Expert Opin Investig Drugs 18:531–9. doi:10.1517/13543780902849244

    Article  CAS  PubMed  Google Scholar 

  45. Sundell CL, Somers PK, Meng CQ, Hoong LK, Suen KL, Hill RR, Landers LK, Chapman A, Butteiger D, Jones M, Edwards D, Daugherty A, Wasserman MA, Alexander RW, Medford RM, Saxena U (2003) AGI-1067: a multifunctional phenolic antioxidant, lipid modulator, anti-inflammatory and antiatherosclerotic agent. J Pharmacol Exp Ther 305:1116–23. doi:10.1124/jpet.102.048132

    Article  CAS  PubMed  Google Scholar 

  46. Colle D, Santos DB, Hartwig JM, Godoi M, Engel DF, de Bem AF, Braga AL and Farina M (2015) Succinobucol, a lipid-lowering drug, protects against 3-nitropropionic acid-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y cells via upregulation of glutathione levels and glutamate cysteine ligase activity. Mol Neurobiol. doi: 10.1007/s12035-014-9086-x

  47. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–97. doi:10.1016/S1474-4422(09)70062-6

    Article  CAS  PubMed  Google Scholar 

  48. Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792:643–50. doi:10.1016/j.bbadis.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  49. Tardif JC, Gregoire J, L’Allier PL, Ibrahim R, Anderson TJ, Reeves F, Title LM, Schampaert E, LeMay M, Lesperance J, Scott R, Guertin MC, Brennan ML, Hazen SL, Bertrand OF (2008) Effects of the antioxidant succinobucol (AGI-1067) on human atherosclerosis in a randomized clinical trial. Atherosclerosis 197:480–6. doi:10.1016/j.atherosclerosis.2006.11.039

    Article  CAS  PubMed  Google Scholar 

  50. Solari N, Bonito-Oliva A, Fisone G, Brambilla R (2013) Understanding cognitive deficits in Parkinson’s disease: lessons from preclinical animal models. Learn Mem 20:592–600. doi:10.1101/lm.032029.113

    Article  PubMed  Google Scholar 

  51. Weingarten D (2004) Process of preparing esters and ethers of probucol and derivatives thereof., Patent WO2004062622

    Google Scholar 

  52. Siveski-Iliskovic N, Hill M, Chow DA, Singal PK (1995) Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation 91:10–5

    Article  CAS  PubMed  Google Scholar 

  53. Castro AA, Wiemes BP, Matheus FC, Lapa FR, Viola GG, Santos AR, Tasca CI, Prediger RD (2013) Atorvastatin improves cognitive, emotional and motor impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats, an experimental model of Parkinson’s disease. Brain Res 1513:103–16. doi:10.1016/j.brainres.2013.03.029

    Article  CAS  PubMed  Google Scholar 

  54. Moreira EL, Rial D, Aguiar AS Jr, Figueiredo CP, Siqueira JM, DalBo S, Horst H, de Oliveira J, Mancini G, dos Santos TS, Villarinho JG, Pinheiro FV, Marino-Neto J, Ferreira J, De Bem AF, Latini A, Pizzolatti MG, Ribeiro-do-Valle RM, Prediger RD (2010) Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson’s disease. J Neural Transm 117:1337–51. doi:10.1007/s00702-010-0464-x

    Article  CAS  PubMed  Google Scholar 

  55. Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8:464–74. doi:10.1016/S1474-4422(09)70068-7

    Article  CAS  PubMed  Google Scholar 

  56. Liepelt-Scarfone I, Behnke S, Godau J, Schweitzer KJ, Wolf B, Gaenslen A, Berg D (2011) Relation of risk factors and putative premotor markers for Parkinson’s disease. J Neural Transm 118:579–85. doi:10.1007/s00702-010-0553-x

    Article  CAS  PubMed  Google Scholar 

  57. Morley JF, Pawlowski SM, Kesari A, Maina I, Pantelyat A, Duda JE (2014) Motor and non-motor features of Parkinson’s disease that predict persistent drug-induced Parkinsonism. Parkinsonism Relat Disord 20:738–42. doi:10.1016/j.parkreldis.2014.03.024

    Article  PubMed  Google Scholar 

  58. Dantzer R, Bluthe RM, Koob GF, Le Moal M (1987) Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl) 91:363–8

    Article  CAS  Google Scholar 

  59. Moreira EL, de Oliveira J, Nunes JC, Santos DB, Nunes FC, Vieira DS, Ribeiro-do-Valle RM, Pamplona FA, de Bem AF, Farina M, Walz R, Prediger RD (2012) Age-related cognitive decline in hypercholesterolemic LDL receptor knockout mice (LDLr−/−): evidence of antioxidant imbalance and increased acetylcholinesterase activity in the prefrontal cortex. J Alzheimers Dis 32:495–511. doi:10.3233/JAD-2012-120541

    CAS  PubMed  Google Scholar 

  60. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–16. doi:10.1006/abbi.1996.0178

    Article  CAS  PubMed  Google Scholar 

  61. Latini A, da Silva CG, Ferreira GC, Schuck PF, Scussiato K, Sarkis JJ, Dutra Filho CS, Wyse AT, Wannmacher CM, Wajner M (2005) Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues. Mol Genet Metab 86:188–99. doi:10.1016/j.ymgme.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  62. Matsumoto T, Suzuki O, Furuta T, Asai M, Kurokawa Y, Nimura Y, Katsumata Y, Takahashi I (1985) A sensitive fluorometric assay for serum monoamine oxidase with kynuramine as substrate. Clin Biochem 18:126–9

    Article  CAS  PubMed  Google Scholar 

  63. Naoi M, Nomura Y, Ishiki R, Suzuki H, Nagatsu T (1998) 4-(O-benzylphenoxy)-N-methylbutylamine (bifemelane) and other 4-(O-benzylphenoxy)-N-methylalkyl amines as new inhibitors of type B monoamine oxidase. J Neurochem 50:243–247

    Article  Google Scholar 

  64. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75

    CAS  PubMed  Google Scholar 

  65. Douhou A, Troadec JD, Ruberg M, Raisman-Vozari R, Michel PP (2001) Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. J Neurochem 78:163–74

    Article  CAS  PubMed  Google Scholar 

  66. Kawamoto JC, Barrett JN (1986) Cryopreservation of primary neurons for tissue culture. Brain Res 384:84–93

    Article  CAS  PubMed  Google Scholar 

  67. Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 74:980–9. doi:10.1124/mol.108.048207

    Article  CAS  PubMed  Google Scholar 

  68. Traver S, Marien M, Martin E, Hirsch EC, Michel PP (2006) The phenotypic differentiation of locus ceruleus noradrenergic neurons mediated by brain-derived neurotrophic factor is enhanced by corticotropin releasing factor through the activation of a cAMP-dependent signaling pathway. Mol Pharmacol 70:30–40. doi:10.1124/mol.106.022715

    CAS  PubMed  Google Scholar 

  69. Lotharius J, O’Malley KL (2000) The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 275:38581–8. doi:10.1074/jbc.M005385200

    Article  CAS  PubMed  Google Scholar 

  70. Richardson JR, Caudle WM, Guillot TS, Watson JL, Nakamaru-Ogiso E, Seo BB, Sherer TB, Greenamyre JT, Yagi T, Matsuno-Yagi A, Miller GW (2007) Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci 95:196–204. doi:10.1093/toxsci/kfl133

    Article  CAS  PubMed  Google Scholar 

  71. Stojkovska I, Wagner BM and Morrison BE (2015) Parkinson’s disease and enhanced inflammatory response. Exp Biol Med (Maywood). doi: 10.1177/1535370215576313

  72. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–34. doi:10.1007/s00441-004-0956-9

    Article  PubMed  Google Scholar 

  73. Tardif JC, Gregoire J, Schwartz L, Title L, Laramee L, Reeves F, Lesperance J, Bourassa MG, L’Allier PL, Glass M, Lambert J, Guertin MC (2003) Effects of AGI-1067 and probucol after percutaneous coronary interventions. Circulation 107:552–8

    Article  CAS  PubMed  Google Scholar 

  74. Ribeiro RP, Moreira EL, Santos DB, Colle D, Dos Santos AA, Peres KC, Figueiredo CP, Farina M (2013) Probucol affords neuroprotection in a 6-OHDA mouse model of Parkinson’s disease. Neurochem Res 38:660–8. doi:10.1007/s11064-012-0965-0

    Article  CAS  PubMed  Google Scholar 

  75. Rojo AI, Montero C, Salazar M, Close RM, Fernandez-Ruiz J, Sanchez-Gonzalez MA, de Sagarra MR, Jackson-Lewis V, Cavada C, Cuadrado A (2006) Persistent penetration of MPTP through the nasal route induces Parkinson’s disease in mice. Eur J Neurosci 24:1874–84. doi:10.1111/j.1460-9568.2006.05060.x

    Article  PubMed  Google Scholar 

  76. Doty RL (2012) Olfactory dysfunction in Parkinson disease. Nat Rev Neurol 8:329–39. doi:10.1038/nrneurol.2012.80

    Article  CAS  PubMed  Google Scholar 

  77. Schintu N, Frau L, Ibba M, Garau A, Carboni E, Carta AR (2009) Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox Res 16:127–39. doi:10.1007/s12640-009-9061-x

    Article  CAS  PubMed  Google Scholar 

  78. Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM (2003) Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 23:6351–6

    CAS  PubMed  Google Scholar 

  79. Bove J, Perier C (2012) Neurotoxin-based models of Parkinson’s disease. Neuroscience 211:51–76. doi:10.1016/j.neuroscience.2011.10.057

    Article  CAS  PubMed  Google Scholar 

  80. Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 991:189–98

    Article  CAS  PubMed  Google Scholar 

  81. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–51. doi:10.1038/nprot.2006.342

    Article  CAS  PubMed  Google Scholar 

  82. Kolacheva AA, Kozina EA, Volina EV, Ugryumov MV (2014) Time course of degeneration of dopaminergic neurons and respective compensatory processes in the nigrostriatal system in mice. Dokl Biol Sci 456:160–4. doi:10.1134/S0012496614030041

    Article  CAS  PubMed  Google Scholar 

  83. Wu X, Cai H, Ge R, Li L, Jia Z (2014) Recent progress of imaging agents for Parkinson’s disease. Curr Neuropharmacol 12:551–63. doi:10.2174/1570159X13666141204221238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    CAS  PubMed  Google Scholar 

  85. Rachakonda V, Pan TH, Le WD (2004) Biomarkers of neurodegenerative disorders: how good are they? Cell Res 14:347–58. doi:10.1038/sj.cr.7290235

    Article  CAS  PubMed  Google Scholar 

  86. Storch A, Ludolph AC, Schwarz J (2004) Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm (Vienna) 111:1267–86. doi:10.1007/s00702-004-0203-2

    Article  CAS  Google Scholar 

  87. Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311:467–9

    Article  CAS  PubMed  Google Scholar 

  88. Muralikrishnan D, Samantaray S, Mohanakumar KP (2003) D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity. Synapse 50:7–13. doi:10.1002/syn.10239

    Article  CAS  PubMed  Google Scholar 

  89. Currais A (2015) Ageing and inflammation—a central role for mitochondria in brain health and disease. Ageing Res Rev 21:30–42. doi:10.1016/j.arr.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  90. Kim HK, Chen W, Andreazza AC (2015) The potential role of the NLRP3 inflammasome as a link between mitochondrial complex I dysfunction and inflammation in bipolar disorder. Neural Plast 2015:408136. doi:10.1155/2015/408136

    PubMed  PubMed Central  Google Scholar 

  91. Yamashita S, Matsuzawa Y (2009) Where are we with probucol: a new life for an old drug? Atherosclerosis 207:16–23. doi:10.1016/j.atherosclerosis.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  92. Khan MM, Kempuraj D, Thangavel R, Zaheer A (2013) Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol. Neurochem Int 62:379–88. doi:10.1016/j.neuint.2013.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Samantaray S, Knaryan VH, Shields DC, Cox AA, Haque A, Banik NL (2015) Inhibition of calpain activation protects MPTP-induced nigral and spinal cord neurodegeneration, reduces inflammation, and improves gait dynamics in mice. Mol Neurobiol 52:1054–66. doi:10.1007/s12035-015-9255-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Muzerengi S, Contrafatto D, Chaudhuri KR (2007) Non-motor symptoms: identification and management. Parkinsonism Relat Disord 13(Suppl 3):S450–6. doi:10.1016/S1353-8020(08)70048-8

    Article  PubMed  Google Scholar 

  95. Calabresi P, Castrioto A, Di Filippo M, Picconi B (2013) New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 12:811–21. doi:10.1016/S1474-4422(13)70118-2

    Article  CAS  PubMed  Google Scholar 

  96. Moriguchi S, Yabuki Y, Fukunaga K (2012) Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice. J Neurochem 120:541–51. doi:10.1111/j.1471-4159.2011.07608.x

    Article  CAS  PubMed  Google Scholar 

  97. Baddeley AD, Hitch GJ (1974) Working memory. In: Recent advances in learning and motivation 8., pp 47–90

    Google Scholar 

  98. Baddeley A (1986) Modularity, mass-action and memory. Q J Exp Psychol A 38:527–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the financial support and grants provided by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and CAPES-COFECUB (France/Brazil; 681/2010). RRV and PPM were supported by program Investissements d’avenir ANR-10-IAIHU-06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danúbia Bonfanti Santos or Marcelo Farina.

Ethics declarations

The procedures used in the present study were approved by the Committee of Ethics for the Use of Animals—Universidade Federal de Santa Catarina (CEUA/UFSC; PP00546). Animals were treated in accordance with the Guide for the Care and Use of Laboratory Animals (National Research Council, 1996), European Directive 86/609, and the National Institutes of Health (NIH) publication “Principles of Laboratory Animal Care.”

Conflict of Interest

The authors have no financial or personal conflict of interest related to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Scheme of in vivo experimental protocols. A) Experimental protocol 1; B) Experimental protocol 2 and C) Experimental protocol 3. (GIF 24 kb)

High resolution image (TIF 5270 kb)

Supplemental Figure 2

Effects of succinobucol and/or MPTP treatment on tyrosine hydroxylase (TH) and dopamine transporter (DAT) levels in the striatum. (A) Representative images of TH immunostaining in the striatum (scale bar = 2 mm). (B) Relative quantification of the optical density TH in striatum of mice. (C) TH protein content measured by Western Blot analysis. (D) Representative images of DAT immunostaining in the striatum (scale bar = 500 μm). (E) Relative quantification of the optical density DAT neurons in striatum of mice. Values represent the mean ± SEM (n = 5 animals/group). *p < 0.05; ***p < 0.001 compared to the control group; #p < 0.05; ###p < 0.001 compared to the MPTP group (two-way ANOVA followed by Newman- Keuls test). (GIF 8 kb)

High resolution image (TIF 4688 kb)

Supplemental Figure 3

Effects of succinobucol (10 mg/kg/day, i.g.; during 45 consecutive days) on glial fibrillary acidic protein (GFAP) in the striatum evaluated through immunohistochemistry 15 days after i.n. infusion of control (saline) or MPTP (1 mg/nostril). (A) Representative images of GFAP immunostaining in the striatum (scale bar = 2 mm). (B) Relatives quantifications of the GFAP optical densities in striatum. Values represent the mean ± SEM (n = 5 animals/group). ***p < 0.001 compared to the control group; ##p < 0.01, compared to the MPTP group (two-way ANOVA followed by Newman- Keuls test). (GIF 2 kb)

High resolution image (TIF 1038 kb)

Supplementary table 1

Succinobucol (SUC) reduces plasma cholesterol levels in mice. Animals were treated with SUC and/or MPTP according to Supplemental Figure 1. Plasma cholesterol levels are expressed as mg/dL and presented as mean ± S.E.M. (n = 6-7 mice/group). **p < 0.01 compared to the control group; ##p < 0.01, compared to the MPTP group (two-way ANOVA followed by Newman- Keuls test). (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, D.B., Colle, D., Moreira, E.L.G. et al. Succinobucol, a Non-Statin Hypocholesterolemic Drug, Prevents Premotor Symptoms and Nigrostriatal Neurodegeneration in an Experimental Model of Parkinson’s Disease. Mol Neurobiol 54, 1513–1530 (2017). https://doi.org/10.1007/s12035-016-9747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9747-z

Keywords

Navigation