Log in

Neuronal NOS Induces Neuronal Differentiation Through a PKCα-Dependent GSK3β Inactivation Pathway in Hippocampal Neural Progenitor Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We investigated the role of neuronal nitric oxide synthase (nNOS) in the neuronal differentiation of neural progenitor cells (NPCs) from hippocampi of E16.5 rat embryos. The production of nitric oxide (NO) and nNOS expression increased markedly during neuronal differentiation as did the expression of neurotrophin-3 (NT3), neurotrophin-4/5 (NT 4/5), and synapsin I. nNOS siRNA or the nNOS inhibitor, 7-nitroindazole (7-NI), decreased expression of the neurotrophins and synapsin I, and suppressed neurite outgrowth. These results suggest that nNOS plays a critical role in neuronal differentiation of hippocampal NPCs. nNOS-mediated neuronal differentiation is controlled by calcineurin since cyclosporin A (CsA), a calcineurin inhibitor, decreased nNOS activation and NO production, and inhibited neurite outgrowth. We found that inactivation of glycogen synthase kinase-3 beta (GSK3β) resulting from activation of protein kinase C alpha (PKCα) is involved in the nNOS-mediated neuronal differentiation. Moreover, lithium chloride (LiCl), a GSK3β inhibitor, increased neuronal differentiation by inhibiting the proliferation of NPCs. Taken together, these results suggest that neuronal differentiation is dependent on calcineurin-mediated activation of nNOS; this induces PKCα-dependent inactivation of GSK3β, which leads to inhibition of the proliferation of hippocampal NPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Masliukov PM, Emanuilov AI, Madalieva LV, Moiseev KY, Bulibin AV, Korzina MB, Porseva VV, Korobkin AA, et al. (2014) Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia. Neuroscience 256:271–281. doi:10.1016/j.neuroscience.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  2. Tricoire L, Vitalis T (2012) Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Frontiers in neural circuits 6:82. doi:10.3389/fncir.2012.00082

    Article  PubMed  PubMed Central  Google Scholar 

  3. Park SY, Koh YJ, Cho JH, Oh DY, Shin SA, Lee KS, Lee HB, Han JS (2007) Nicotine inhibits bFGF-induced neurite outgrowth through suppression of NO synthesis in H19-7 cells. Neurochem Res 32(3):481–488. doi:10.1007/s11064-006-9256-y

    Article  CAS  Google Scholar 

  4. Niu L, Chen T, Wang YY, Li YQ (2009) Neurochemical phenotypes of endomorphin-2-containing neurons in vagal nodose neurons of the adult rat. Neurochem Int 55(7):542–551. doi:10.1016/j.neuint.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez-Islas E, Leon-Olea M (2004) Nitric oxide synthase inhibition during synaptic maturation decreases synapsin I immunoreactivity in rat brain. Nitric Oxide 10(3):141–149. doi:10.1016/j.niox.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  6. Virgili M, Monti B, LoRusso A, Bentivogli M, Contestabile A (1999) Developmental effects of in vivo and in vitro inhibition of nitric oxide synthase in neurons. Brain Res 839(1):164–172

    Article  CAS  PubMed  Google Scholar 

  7. Ma SX, Peterson RG, Magee EM, Lee P, Lee WP, Li XY (2015) Impaired expression of neuronal nitric oxide synthase in the gracile nucleus is involved in neuropathic changes in Zucker diabetic fatty rats with and without 2,5-hexanedione intoxication. Neurosci Res. doi:10.1016/j.neures.2015.10.007

    PubMed  PubMed Central  Google Scholar 

  8. Fritzen S, Schmitt A, Koth K, Sommer C, Lesch KP, Reif A (2007) Neuronal nitric oxide synthase (NOS-I) knockout increases the survival rate of neural cells in the hippocampus independently of BDNF. Mol Cell Neurosci 35(2):261–271. doi:10.1016/j.mcn.2007.02.021

    Article  CAS  PubMed  Google Scholar 

  9. Adachi M, Abe M, Sasaki T, Kato H, Kasahara J, Araki T (2010) Role of inducible or neuronal nitric oxide synthase in neurogenesis of the dentate gyrus in aged mice. Metab Brain Dis 25(4):419–424. doi:10.1007/s11011-010-9224-8

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, ** K, Childs JT, **e L, Mao XO, Greenberg DA (2005) Neuronal nitric oxide synthase and ischemia-induced neurogenesis. J Cereb Blood Flow Metab 25(4):485–492. doi:10.1038/sj.jcbfm.9600049

    Article  CAS  PubMed  Google Scholar 

  11. Myslivecek J, Hassmannova J, Barcal J, Safanda J, Zalud V (1996) Inhibitory learning and memory in newborn rats influenced by nitric oxide. Neuroscience 71(2):299–312

    Article  CAS  PubMed  Google Scholar 

  12. Vercelli A, Garbossa D, Repici M, Biasiol S, Jhaveri S (2001) Role of nitric oxide in the development of retinal projections. Ital J Anat Embryol 106(2 Suppl 1):489–498

    CAS  PubMed  Google Scholar 

  13. Vercelli A, Garbossa D, Biasiol S, Repici M, Jhaveri S (2000) NOS inhibition during postnatal development leads to increased ipsilateral retinocollicular and retinogeniculate projections in rats. Eur J Neurosci 12(2):473–490

    Article  CAS  PubMed  Google Scholar 

  14. Yoshimura T, Arimura N, Kaibuchi K (2006) Molecular mechanisms of axon specification and neuronal disorders. Ann N Y Acad Sci 1086:116–125. doi:10.1196/annals.1377.013

    Article  CAS  PubMed  Google Scholar 

  15. Garrido JJ, Simon D, Varea O, Wandosell F (2007) GSK3 alpha and GSK3 beta are necessary for axon formation. FEBS Lett 581(8):1579–1586. doi:10.1016/j.febslet.2007.03.018

    Article  CAS  PubMed  Google Scholar 

  16. Schlessinger K, McManus EJ, Hall A (2007) Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol 178(3):355–361. doi:10.1083/jcb.200701083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421(6924):753–756. doi:10.1038/nature01423

    Article  CAS  PubMed  Google Scholar 

  18. Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281(35):25457–25465. doi:10.1074/jbc.M603469200

    Article  CAS  PubMed  Google Scholar 

  19. Lee SJ, Chung YH, Joo KM, Lim HC, Jeon GS, Kim D, Lee WB, Kim YS, et al. (2006) Age-related changes in glycogen synthase kinase 3beta (GSK3beta) immunoreactivity in the central nervous system of rats. Neurosci Lett 409(2):134–139. doi:10.1016/j.neulet.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  20. Cuesto G, Jordan-Alvarez S, Enriquez-Barreto L, Ferrus A, Morales M, Acebes A (2015) GSK3beta inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS One 10(3):e0118475. doi:10.1371/journal.pone.0118475

    Article  PubMed  PubMed Central  Google Scholar 

  21. Acebes A, Martin-Pena A, Chevalier V, Ferrus A (2011) Synapse loss in olfactory local interneurons modifies perception. J Neurosci 31(8):2734–2745. doi:10.1523/JNEUROSCI.5046-10.2011

    Article  CAS  PubMed  Google Scholar 

  22. Martin-Pena A, Acebes A, Rodriguez JR, Sorribes A, de Polavieja GG, Fernandez-Funez P, Ferrus A (2006) Age-independent synaptogenesis by phosphoinositide 3 kinase. J Neurosci 26(40):10199–10208. doi:10.1523/JNEUROSCI.1223-06.2006

    Article  CAS  PubMed  Google Scholar 

  23. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11(8):539–551. doi:10.1038/nrn2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moore SF, van den Bosch MT, Hunter RW, Sakamoto K, Poole AW, Hers I (2013) Dual regulation of glycogen synthase kinase 3 (GSK3)alpha/beta by protein kinase C (PKC)alpha and Akt promotes thrombin-mediated integrin alphaIIbbeta3 activation and granule secretion in platelets. J Biol Chem 288(6):3918–3928. doi:10.1074/jbc.M112.429936

    Article  CAS  PubMed  Google Scholar 

  25. De Montigny A, Elhiri I, Allyson J, Cyr M, Massicotte G (2013) NMDA reduces Tau phosphorylation in rat hippocampal slices by targeting NR2A receptors, GSK3beta, and PKC activities. Neural Plast 2013:261593. doi:10.1155/2013/261593

    Article  PubMed  PubMed Central  Google Scholar 

  26. Park SY, Ma W, Yoon SN, Kang MJ, Han JS (2015) Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells. Mol Neurobiol 51(3):1089–1102. doi:10.1007/s12035-014-8773-y

    Article  CAS  PubMed  Google Scholar 

  27. Talman V, Amadio M, Osera C, Sorvari S, Boije Af Gennas G, Yli-Kauhaluoma J, Rossi D, Govoni S, et al. (2013) The C1 domain-targeted isophthalate derivative HMI-1b11 promotes neurite outgrowth and GAP-43 expression through PKCalpha activation in SH-SY5Y cells. Pharmacol Res 73:44–54. doi:10.1016/j.phrs.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  28. Han NL, Wen J, Lin Q, Tan PL, Liou YC, Sheu FS (2007) Proteomics analysis of the expression of neurogranin in murine neuroblastoma (Neuro-2a) cells reveals its involvement for cell differentiation. Int J Biol Sci 3(5):263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim JS, Chang MY, IT Y, Kim JH, Lee SH, Lee YS, Son H (2004) Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 89(2):324–336. doi:10.1046/j.1471-4159.2004.02329.x

    Article  CAS  PubMed  Google Scholar 

  30. Markus A, Patel TD, Snider WD (2002) Neurotrophic factors and axonal growth. Curr Opin Neurobiol 12(5):523–531

    Article  CAS  PubMed  Google Scholar 

  31. Cockrell A, Laroux FS, Jourd'heuil D, Kawachi S, Gray L, Van der Heyde H, Grisham MB (1999) Role of inducible nitric oxide synthase in leukocyte extravasation in vivo. Biochem Biophys Res Commun 257(3):684–686. doi:10.1006/bbrc.1999.0484

    Article  CAS  PubMed  Google Scholar 

  32. Sachewsky N, Hunt J, Cooke MJ, Azimi A, Zarin T, Miu C, Shoichet MS, Morshead CM (2014) Cyclosporin A enhances neural precursor cell survival in mice through a calcineurin-independent pathway. Dis Model Mech 7(8):953–961. doi:10.1242/dmm.014480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Diaz-Ruiz A, Vergara P, Perez-Severiano F, Segovia J, Guizar-Sahagun G, Ibarra A, Rios C (2005) Cyclosporin-a inhibits constitutive nitric oxide synthase activity and neuronal and endothelial nitric oxide synthase expressions after spinal cord injury in rats. Neurochem Res 30(2):245–251

    Article  CAS  PubMed  Google Scholar 

  34. Zaragosi LE, Wdziekonski B, Fontaine C, Villageois P, Peraldi P, Dani C (2008) Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes. BMC Cell Biol 9:11. doi:10.1186/1471-2121-9-11

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102. doi:10.1016/j.tibs.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  36. Bijur GN, Jope RS (2003) Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport 14(18):2415–2419. doi:10.1097/01.wnr.0000099609.19426.70

    Article  CAS  PubMed  Google Scholar 

  37. Lenox RH, Wang L (2003) Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol Psychiatry 8(2):135–144. doi:10.1038/sj.mp.4001306

    Article  CAS  PubMed  Google Scholar 

  38. Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417(6886):292–295. doi:10.1038/417292a

    Article  CAS  PubMed  Google Scholar 

  39. Chen RH, Ding WV, McCormick F (2000) Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J Biol Chem 275(23):17894–17899. doi:10.1074/jbc.M905336199

    Article  CAS  PubMed  Google Scholar 

  40. Contestabile A, Monti B, Contestabile A, Ciani E (2003) Brain nitric oxide and its dual role in neurodegeneration/neuroprotection: understanding molecular mechanisms to devise drug approaches. Curr Med Chem 10(20):2147–2174

    Article  CAS  PubMed  Google Scholar 

  41. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, et al. (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84(5):757–767

    Article  CAS  PubMed  Google Scholar 

  42. Cheng A, Wang S, Cai J, Rao MS, Mattson MP (2003) Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev Biol 258(2):319–333

    Article  CAS  PubMed  Google Scholar 

  43. Etherington SJ, Everett AW (2004) Postsynaptic production of nitric oxide implicated in long-term depression at the mature amphibian (Bufo marinus) neuromuscular junction. J Physiol 559(Pt 2):507–517. doi:10.1113/jphysiol.2004.066498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim WY, Snider WD (2011) Functions of GSK-3 signaling in development of the nervous system. Front Mol Neurosci 4:44. doi:10.3389/fnmol.2011.00044

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hall AC, Brennan A, Goold RG, Cleverley K, Lucas FR, Gordon-Weeks PR, Salinas PC (2002) Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in develo** neurons. Mol Cell Neurosci 20(2):257–270

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, Zhu ZA (2014) Nitric oxide show its survival role by NO-PKC pathway through cGMP-dependent or independent on the culture of cerebella granular neurons. Neurosci Lett 583:165–169. doi:10.1016/j.neulet.2014.06.062

    Article  CAS  PubMed  Google Scholar 

  47. Perez-Rodriguez R, Olivan AM, Roncero C, Moron-Oset J, Gonzalez MP, Oset-Gasque MJ (2014) Glutamate triggers neurosecretion and apoptosis in bovine chromaffin cells through a mechanism involving NO production by neuronal NO synthase activation. Free Radic Biol Med 69:390–402. doi:10.1016/j.freeradbiomed.2014.01.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Young-Myeong Kim (Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University, Chunchon, Kangwon-do, Republic of Korea) for the nNOS plasmid. This work was supported by a grant from the Medical Research Center program (NRF-2012R1A5A2A34671243) of the Ministry of Science and Technology, Republic of Korea, and partly supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning (2015R1C1A1A02037376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-Soo Han.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SY., Kang, MJ. & Han, JS. Neuronal NOS Induces Neuronal Differentiation Through a PKCα-Dependent GSK3β Inactivation Pathway in Hippocampal Neural Progenitor Cells. Mol Neurobiol 54, 5646–5656 (2017). https://doi.org/10.1007/s12035-016-0110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0110-1

Keywords

Navigation