Log in

Highly luminescent upconversion material for anti-counterfeiting application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Counterfeiting has become a major concern these days and has become a serious problem around the world. The latest advances in technology have made it easier to counterfeit sophisticated products. Therefore, it is important to look for new luminescent materials to combat counterfeiting. Here we report an upconversion YBO3:Yb3+,Er3+ phosphor to combat counterfeiting. YBO3:Yb3+,Er3+ Phosphor was admixed with a polyvinyl alcohol solution for the formation of colloidal solution to print security codes. The printed security codes give the emission of green colour at an excitation wavelength of 980 nm and appears white in sunlight. The structural, morphological and photoluminescent properties of YBO3:Yb3+,Er3+ phosphorescent material were characterized by XRD, SEM, TEM and photoluminescence technology, respectively. Therefore, the printed security code provides the anti-counterfeiting feature that is easy to detect and difficult to counterfeit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zhang C, Wang B, Li W, Huang S, Kong L, Li Z et al 2017 Nat. Commun. 8 1138

    Article  Google Scholar 

  2. Hou X, Ke C, Bruns J, McGonigal P, Pettman R and Stoddart J 2015 Nat. Commun. 6 6884

    Article  Google Scholar 

  3. Sun H, Liu S, Lin W, Zhang K, Lv W, Huang X et al 2014 Nat. Commun. 5 3601

    Article  Google Scholar 

  4. Zhang Y, Aslan K, Previte M and Geddes C 2008 Dyes Pigm. 77 545

    Article  CAS  Google Scholar 

  5. Liu Y, Ai K and Lu L 2011 Nanoscale 3 4804

    Article  CAS  Google Scholar 

  6. Baride A, Meruga J, Douma C, Langerman D, Crawford G, Kellar J et al 2015 RSC Adv. 5 101338

    Article  CAS  Google Scholar 

  7. Yoon B, Lee J, Park I, Jeon S, Lee J and Kim J 2013 J. Mater. Chem. C 1 2388

    Article  CAS  Google Scholar 

  8. Hardwick B, Jackson W, Wilson G and Mau A 2001 Adv. Mater. 13 980

    Article  CAS  Google Scholar 

  9. Prime E and Solomon D 2010 Angew. Chem. 49 3726

    Article  CAS  Google Scholar 

  10. Zhang X, Marathe A, Sohal S, Holtz M, Davis M, Weeks et al 2012 J. Mater. Chem. C 22 6485

    Article  CAS  Google Scholar 

  11. Ren M, Lin J, Dong Y, Yang L, Su M and You L 1999 Chem. Mater. 11 1576

    Article  CAS  Google Scholar 

  12. Pushpendra, Singh S, Srinidhi S, Kunchala R K, Kalia R, Achary S N et al 2021 Cryst. Growth Des. 21 4619

    Article  CAS  Google Scholar 

  13. Suryawanshi I, Srinidhi S, Singh S, Kalia R, Kunchala R K, Mudavath S L et al 2021 Mater. Today Commun. 26 102144

    Article  Google Scholar 

  14. Kunchala R K, Kalia R and Naidu B S 2020 RSC Adv. 10 14525

    Article  Google Scholar 

  15. Kunchala R K, Kalia R and Naidu B S 2020 Ceram. Int. 46 1861

    Google Scholar 

  16. Guillou O, Daiguebonne C, Calvez G and Bernot K 2016 Acc. Chem. Res. 49 844

    Article  CAS  Google Scholar 

  17. Yang Z, Yan D, Zhu K, Song Z, Yu X, Zhou D et al 2011 Mater. Lett. 65 1245

    Article  CAS  Google Scholar 

  18. Lim H, Won J, Wi S, Jang S, Chung J and Lee Y 2021 Solid State Sci. 117 1293

    Article  Google Scholar 

  19. Gangwar A, Kedawat G, Papanai G and Gupta B 2019 J. Mater. Chem. C 7 13867

    Article  CAS  Google Scholar 

  20. Gangwar A, Nagpal K and Gupta B 2018 Chem. Sel. 3 9627

    CAS  Google Scholar 

  21. Chen J and Zhao J 2012 Sensors 12 2414

    Article  CAS  Google Scholar 

  22. Yi Z, Wen B, Qian C, Wang H, Rao L, Liu H et al 2013 Adv. Condens. Matter. Phys. 2013

  23. Li H, Zhang Y, Shao L, Yuan P and **a X 2017 J. Lumin. 192 999

    Article  CAS  Google Scholar 

  24. Sangeetha A, Nagabhushana B and Jayasankar C 2020 Solid State Sci. 105 106232

    Article  CAS  Google Scholar 

  25. Gangwar A, Gupta A, Kedawat G, Kumar P, Singh B, Singh N et al 2018 Chem. A Eur. J. 24 9477

    Article  CAS  Google Scholar 

  26. Gangwar A, Nagpal K, Kumar P, Singh N and Gupta B 2019 J. Appl. Phys. 125 074903

    Article  Google Scholar 

Download references

Acknowledgement

We wish to thank the Director, FoE & CS Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, for his keen interest in this work. Dr. A K Gangwar gratefully acknowledges the financial support from the University Grant Commission (UGC), Government of India. We are thankful to the CSIR-NPL for providing the facilities for characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Gangwar.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 475 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, A.K., Bharti, D.K. Highly luminescent upconversion material for anti-counterfeiting application. Bull Mater Sci 46, 224 (2023). https://doi.org/10.1007/s12034-023-03064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03064-5

Keywords

Navigation