Log in

Storage stability of the oxygen plasma-modified PLA film

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Polylactide (PLA) is the second most popular biodegradable plastic in the world currently and is a growing alternative to traditional plastics. Similar to most of the polymers, PLA requires surface activation before further processing, among others plasma activation. Hydrophobic recovery is a major problem of plasma-treated polymer; therefore, authors performed extensive research on the storage stability of the oxygen plasma-treated PLA film. For that purpose the low-temperature plasma with oxygen was applied on PLA film and its influence on surface-free energy (SFE) and contact angle (CA) with water, diiodomethane and ethylene glycol was analysed together with their subsequent hydrophobic recovery during storage. In addition, chemical changes were measured with X-ray photoelectron spectroscopy (XPS), mass loss was determined by weight measurement and the surface topography was measured by means of confocal microscopy. The best wettability of the substrate was observed after 2 and 10 min activation time, which was confirmed by the lowest CA, as well as the highest values of SFE. The degree of hydrophobic recovery depends on treatment time and is most stable for 6 min treatment. The PLA hydrophobic recovery reached its peak after a storage period of 14 days, after which the hydrophilic properties improved again, regardless of the activation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mahanti J Ch 2018 Adv. Envi. Was. Mana. Rec. 1 1

    Google Scholar 

  2. Wang C, Zhao L, Ming L K, Chen W Q and Sutherland J W et al 2020 Resour. Conserv. Recy. 153 104591

    Article  Google Scholar 

  3. Jordá-Vilaplana A, Fombuena V, García-García D, Samper M D and Sánchez-Nácher L 2014 Eur. Polym. J. 58 23

    Article  CAS  Google Scholar 

  4. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R et al 2013 Prog. Polym. Sci. 38 1720

    Article  CAS  Google Scholar 

  5. Siracusa V, Rocculi P, Romani S and Rosa M D 2008 Trends Food Sci. Technol. 19 634

    Article  CAS  Google Scholar 

  6. Rocca-Smith J R, Karbowiak T, Marcuzzo E, Sensidoni A, Piasente F, Champion D et al 2016 Polym. Degrad. Stabil. 132 109

    Article  CAS  Google Scholar 

  7. Farah S, Anderson D G and Langer R 2016 Adv. Drug Deliver. Rev. 107 367

    Article  CAS  Google Scholar 

  8. Cheng Y, Deng S, Chen P and Ruan R 2009 Front. Chem. China. 4 259

    Article  Google Scholar 

  9. Künkel A, Becker J, Börger L, Hamprecht J, Koltzenburg S, Loos R et al 2016 Polymers, biodegradable (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p 1

    Google Scholar 

  10. Stepczyńska M 2016 Plasma Process. Polym. 13 1080

    Article  CAS  Google Scholar 

  11. Benetto E, Jury C, Igos E, Carton J, Hild P, Vergne Ch et al 2015 J. Clean. Prod. 87 953

    Article  CAS  Google Scholar 

  12. Hegemann D, Brunner H and Oehr Ch 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 208 281

    Article  CAS  Google Scholar 

  13. Pankaj S K, Bueno-Ferrer C, Misra N N, O'Neill L, Jiménez A, Bourke P et al 2014 Innov. Food Sci. Emerg. 21 107

    Article  CAS  Google Scholar 

  14. Izdebska J and Thomas S (eds) 2016 Printing on polymers: fundamentals and applications (Oxford & Waltham: Elsevier)

  15. Couturaud B, Baldo A, Mas A and Robin J J 2015 J. Colloid Interf. Sci. 448 427

    Article  CAS  Google Scholar 

  16. Rasal R M, Janorkar A V and Hirt D E 2010 Prog. Polym. Sci. 35 338

    Article  CAS  Google Scholar 

  17. Carrasco F, Pagès P, Gámez-Pérez J, Santana O O and Maspoch M L 2010 Polym. Degrad. Stabil. 95 116

    Article  CAS  Google Scholar 

  18. Morent R, De Geyter N, Desmet T, Dubruel P and Leys Ch 2011 Plasma Process. Polym. 8 171

    Article  CAS  Google Scholar 

  19. Lv J, Zhou Q, Zhi T, Gao D and Wang Ch 2016 J. Clean. Prod. 118 187

    Article  CAS  Google Scholar 

  20. Grace J M and Gerenser L J 2003 J. Disper. Sci. Technol. 24 305

    Article  CAS  Google Scholar 

  21. Dubruel P and Van Vlierberghe S (eds) 2014 Biomaterials for bone regeneration (Amsterdam: Elsevier)

  22. Shenton M J and Stevens G C 2001 J. Phys. D: Appl. Phys. 34 2761

    Article  CAS  Google Scholar 

  23. Vandencasteele N and Reniers F 2010 J. Electron Spectrosc. Relat. Phenom. 178–179 394

    Article  CAS  Google Scholar 

  24. Kusano Y 2014 J. Adhes. 90 755

    Article  CAS  Google Scholar 

  25. Zhao Y, Fina A, Venturelloa A and Geobaldo F 2013 Appl. Surf. Sci. 283 181

    Article  CAS  Google Scholar 

  26. Kahouli A, Sylvestre A, Laithier J-F, Pairis S, Garden J-L, Andre E et al 2012 J. Phys. D: Appl. Phys. 45 215306

    Article  CAS  Google Scholar 

  27. Banik I, Kim K S, Yun Y I, Kim D H, Ryu C M and Park C E 2002 J. Adhes. Sci. Technol. 16 1155

    Article  CAS  Google Scholar 

  28. Poncin-Epaillard F and Legeay G 2003 J. Biomat. Sci.-Polym. E 14 1005

  29. Moraczewski K, Rytlewski P, Malinowski R and Żenkiewicz M 2015 Appl. Surf. Sci. 346 11

    Article  CAS  Google Scholar 

  30. Kudryavtseva V L, Zhuravlev M V and Tverdokhlebov S I 2017 Proc. Am. Inst. Phys. (AIP) Conf. p 020037

  31. Boselli M, Colombo V, De Angelis M G, Ghedini E, Gherardi M and Laurita R 2012 J. Phys. Conf. Ser. 406 1

    Article  CAS  Google Scholar 

  32. De Geyter N, Morent R, Desmet T, Trentesaux M, Gengembre L, Dubruel P et al 2010 Surf. Coat. Technol. 204 3272

    Article  CAS  Google Scholar 

  33. De Geyter N 2013 Surf. Coat. Technol. 214 69

    Article  CAS  Google Scholar 

  34. Liu C, Cuib N, Brown N M D and Meenan B J 2004 Surf. Coat. Technol. 185 311

    Article  CAS  Google Scholar 

  35. Pankaj S K 2015 PhD Thesis (Dublin Institute of Technology, School of Food Science and Environmental Health)

  36. Jacobs T, Declercq H, De Geyter N, Cornelissen R, Dubruel P, Leys Ch et al 2013 J. Mater. Sci.: Mater. Med. 24 469

    CAS  Google Scholar 

  37. Kim M C and Masuoka T 2009 React. Funct. Polym. 69 287

    Article  CAS  Google Scholar 

  38. Chaiwong B, Rachtanapun P, Wongchaiya P, Auras R and Boonyawan D 2010 Surf. Coat. Technol. 204 2933

    Article  CAS  Google Scholar 

  39. Moraczewski K, Stepczyńska M, Malinowski R, Rytlewski P, Jagodziński B and Żenkiewicz M 2016 Appl. Surf. Sci. 377 228

    Article  CAS  Google Scholar 

  40. Hirotsu T, Nakayama K, Tsujisaka T, Mas A and Schue F 2002 Polym. Eng. Sci. 42 299

    Article  CAS  Google Scholar 

  41. Morent R, De Geyter N, Gengembre L, Dubruel P, Leys C and Payen E 2010 Plasma Chem. Plasma Process. 30 525

    Article  CAS  Google Scholar 

  42. Izdebska-Podsiadły J and Dörsam E 2017 Vacuum 145 278

    Article  CAS  Google Scholar 

  43. Song A Y, Oh Y A, Roh S H, Kim J H and Min S C 2016 J. Food Sci. 81 E86

    Article  CAS  Google Scholar 

  44. Hirotsu T, Masuda T, Matumura Y and Takahashi M 1997 J. Photopolym. Sci. Tec. 10 123

    Article  CAS  Google Scholar 

  45. Thomas S, Mozetič M, Cvelbar U, Špatenka P and Praveen K M (eds) 2019 Non-thermal plasma technology for polymeric materials (Amsterdam & Oxford & Cambridge: Elsevier)

  46. Novák I, Popelka A, Luyt A S, Chehimi M M, Špírková M, Janigová I et al 2013 Surf. Coat. Technol. 235 407

    Article  CAS  Google Scholar 

  47. Wan Y, Qua X, Lub J, Zhub Ch, Wanb L, Yang J et al 2004 Biomaterials 25 4777

    Article  CAS  Google Scholar 

  48. Wiącek A E, Terpiłowski K, Jurak M and Worzakowska M 2016 Eur. Polym. J. 78 1

    Article  CAS  Google Scholar 

  49. Demina T S, Gilman A B and Zelenetskii A N 2017 High Energ. Chem. 51 302

    Article  CAS  Google Scholar 

  50. Vesel A, Junkar I, Cvelbar U, Kovac J and Mozetic M 2008 Surf. Interface Anal. 40 1444

    Article  CAS  Google Scholar 

  51. Kuvaldina E V, Rybkin V V, Titov V A and Shikova T G 2004 High Energ. Chem. 38 411

    Article  CAS  Google Scholar 

  52. Kuvaldina E V and Rybkin V V 2008 High Energ. Chem. 42 59

    Article  CAS  Google Scholar 

  53. Izdebska-Podsiadły J 2017 Proceedings of 49th Conference of IC & 8th CACPP Conference p 48

  54. Izdebska-Podsiadły J 2017 Opakowanie 10 67

    Google Scholar 

  55. Gotoh K, Yasukawa A and Taniguchi K 2011 J. Adhes. Sci. Technol. 25 307

    Article  CAS  Google Scholar 

  56. Decker W, Pirzada S, Michael M and Yializis A 2000 Proceedings of 43rd Annual Technical Conference p 1

  57. Borcia C, Punga I L and Borcia G 2014 Appl. Surf. Sci. 317 103

    Article  CAS  Google Scholar 

  58. Bodas D and Khan-Malek C 2007 Sens. Actuators B 123 368

    Article  CAS  Google Scholar 

  59. Chen Y, Deng S, Chen P and Ruan R 2013 Appl. Surf. Sci. 265 452

    Article  CAS  Google Scholar 

  60. Fombuena V, García-Sanoguera D, Sánchez-Nácher L, Balart R and Boronat T 2014 J. Adhes. Sci. Technol. 28 97

    Article  CAS  Google Scholar 

  61. Ren Y, Xua L, Wang Ch, Wang X, Ding Z and Chen Y 2017 Appl. Surf. Sci. 426 612

    Article  CAS  Google Scholar 

  62. Jordá-Vilaplana A, Sánchez‐Nácher L, García‐Sanoguera D, Carbonell A and Ferri J M 2016 J. Appl. Polym. Sci. 133 43040

    Article  CAS  Google Scholar 

  63. Nakamatsu J, Delgado-Aparicio L F, Da Silva R and Soberon F 1999 J. Adhes. Sci. Technol. 13 753

    Article  CAS  Google Scholar 

  64. Vesel A and Mozetič M 2012 Vacuum 86 634

    Article  CAS  Google Scholar 

  65. Van Deynse A, Cools P, Leys Ch, Morent R and De Geyter N 2014 Surf. Coat. Technol. 258 359

    Article  CAS  Google Scholar 

  66. Nguyen L 2014 PhD Thesis (Massachusetts: Mount Holyoke College)

  67. Yun Y I, Kim K S, Uhm S-J, Khatua B B, Cho K, Kim J K et al 2004 J. Adhes. Sci. Technol. 18 1279

    Article  CAS  Google Scholar 

  68. Surface tension values of some common test liquids for surface energy analysis. Available: http://www.surface-tension.de/ (accessed on 25 November 2017)

  69. Ba O M, Marmey P, Anselme K, Duncan A C and Ponche A 2016 Colloids Surf. B 145 1

    Article  CAS  Google Scholar 

  70. Drelich J 2013 Surf. Innov. 1 1

    Article  Google Scholar 

  71. Żenkiewicz M 2007 J. Achiev. Mater. Manuf. Eng. 24 137

    Google Scholar 

  72. Karbowiak T, Debeaufort F and Voilley A 2006 Crc. Cr. Rev. Food Sci. 46 391

    Article  Google Scholar 

  73. Mittal K L (ed) 2008 Contact angle, wettability and adhesion Vol 6 (Boston: VSP Leiden)

  74. Busscher H J, van Pelt A W J, de Boer P, de Jong H P and Arends J 1984 Colloids Surf. 9 319

    Article  CAS  Google Scholar 

  75. Canal C, Molina R, Bertran E and Erra P 2004 J. Adhes. Sci. Technol. 18 1077

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the financial help from WUT Development Program by the European Union within the European Social Fund. We would like to acknowledge Dipl.-Ing. Karl Kopp from Darmstadt University of Technology, Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Surface Chemistry of Nanomaterials Group, for his great support with XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Izdebska-Podsiadły.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izdebska-Podsiadły, J., Dörsam, E. Storage stability of the oxygen plasma-modified PLA film. Bull Mater Sci 44, 79 (2021). https://doi.org/10.1007/s12034-021-02355-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02355-z

Keywords

Navigation