Log in

Control Phytophagous Nematodes By Engineering Phytosterol Dealkylation Caenorhabditis elegans as a Model

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Plant-parasitic nematodes ingest and convert host phytosterols via dealkylation to cholesterol for both structural and hormonal requirements. The insect 24-dehydrocholesterol reductase (DHCR24) was shown in vitro as a committed enzyme in the dealkylation via chemical blocking. However, an increased brood size and ovulation rate, instead compromised development, were observed in the engineered nematode Caenorhabditis elegans where the DHCR24 gene was knocked down, indicating the relationship between DHCR24 and dealkylation and their function in nematodes remains illusive. In this study, a defect in C. elegans DHCR24 causes impaired growth of the nematode with sitosterol (a major component of phytosterols) as a sole sterol source. Plant sterols with rationally designed structure (null substrates for dealkylation) can’t be converted to cholesterol in wild-type worms, and their development was completely halted. This study underpins the essential function of DHCR24 in nematodes and would be beneficial for the development of novel nematocidal strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Gan, Q., Wang, X., Wang, Y., **e, Z., Tian, Y., & Lu, Y. (2017). Culture-free detection of crop pathogens at the single-cell level by micro-Raman spectroscopy. Advanced Science, 7, 1700127.

    Article  Google Scholar 

  2. Nicol, J. M., Turner, S. J., Coyne, D. L., Nijs, Ld., Hockland, S., & Maafi, Z. T. (2011). Current nematode threats to world agriculture. In J. Jones, G. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant-nematode interactions (pp. 21–43). Dordrecht: Springer, Netherlands.

    Chapter  Google Scholar 

  3. Abad, P., Gouzy, J., Aury, J.-M., Castagnone-Sereno, P., Danchin, E. G. J., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V. C., et al. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 909–915.

    Article  CAS  PubMed  Google Scholar 

  4. Nes, D. (2011). W: Biosynthesis of cholesterol and other sterols. Chemical Reviews, 111, 6423–6451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kurzchalia, T. V., & Ward, S. (2003). Why do worms need cholesterol? Nature Cell Biology, 5, 684–688.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, W., Fisher, P. M., Vanderloop, B. H., Shen, Y., Shi, H., Maldonado, A. J., Leaver, D. J., & Nes, W. D. (2020). A nematode sterol C4α-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity. Journal of Lipid Research, 61, 192–204.

    Article  CAS  PubMed  Google Scholar 

  7. Fisher, P. M., Zhou, W., Miller, M. B., Shen, Y., Shi, H., & Nes, W. D. (2017). Substrate Specificity and Unusual Reaction Mechanism of the Sterol 4-Methyltransferase in Caenorhabdtis elegans. The FASEB Journal, 31, 629.622-629.622.

    Google Scholar 

  8. Zhou, W., Nguyen, H. T., & Nes, W. D. (2008). Plant sterol methyltransferases: Phytosterolomic analysis, enzymology, and bioengineering strategies. In advances in plant biochemistry and Molecular Biology. Pergamon, 1, 241–281.

    CAS  Google Scholar 

  9. Nes, W. D., Sinha, A., Jayasimha, P., Zhou, W., Song, Z., & Dennis, A. L. (2006). Probing the sterol binding site of soybean sterol methyltransferase by site-directed mutagenesis: Functional analysis of conserved aromatic amino acids in Region 1. Archives of Biochemistry and Biophysics, 448, 23–30.

    Article  CAS  PubMed  Google Scholar 

  10. Song, Z., Zhou, W., Liu, J., & Nes, W. D. (2004). Mechanism-based active site modification of the soybean sterol methyltransferase by 26,27-dehydrocycloartenol. Bioorganic and Medicinal Chemistry Letters, 14, 33–36.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, W., & David Nes, W. (2003). Sterol methyltransferase2: Purification, properties, and inhibition. Archives of Biochemistry and Biophysics, 420, 18–34.

    Article  CAS  PubMed  Google Scholar 

  12. Nes, W. D., Song, Z., Dennis, A. L., Zhou, W., Nam, J., & Miller, M. B. (2003). Biosynthesis of phytosterols: Kinetic mechanism for the enzymatic C-methylation of sterols. Journal of Biological Chemistry, 278, 34505–34516.

    Article  CAS  PubMed  Google Scholar 

  13. Diener, A. C., Li, H., Zhou, W., Whoriskey, W. J., Nes, W. D., & Fink, G. R. (2000). Sterol methyltransferase 1 controls the level of cholesterol in plants. The Plant Cell, 12, 853–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu, Y., Zhou, W., Wei, L., Li, J., Jia, J., Li, F., Smith, S. M., & Xu, J. (2014). Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica. Biotechnology for Biofuels, 7, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lu, Y., Jiang, J., Zhao, H., Han, X., **ang, Y., & Zhou, W. (2020). Clade-specific sterol metabolites in dinoflagellate endosymbionts are associated with coral bleaching in response to environmental cues. mSystems. https://doi.org/10.1128/mSystems.00765-00720

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang, J., Wang, A., Deng, X., Zhou, W., Gan, Q., & Lu, Y. (2021). How Symbiodiniaceae meets the challenges of life during coral bleaching. Coral Reefs, 40, 1339–1353.

    Article  Google Scholar 

  17. Zhou, W., Zhang, X., Wang, A., Yang, L., Gan, Q., Yi, L., Summons, R. E., Volkman, J. K., & Lu, Y. (2022). Widespread sterol methyltransferase participates in the biosynthesis of both C4α- and C4β-methyl sterols. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.2c01401

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou, W., Warrilow, A. G. S., Thomas, C. D., Ramos, E., Parker, J. E., Price, C. L., Vanderloop, B. H., Fisher, P. M., Loftis, M. D., Kelly, D. E., et al. (2018). Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii. Biochimica et Biophysica Acta (BBA)-Moslecular and Cell Biology of Lipids, 1863, 1164–1178.

    Article  CAS  Google Scholar 

  19. Lepesheva, G. I., Zaitseva, N. G., Nes, W. D., Zhou, W., Arase, M., Liu, J., Hill, G. C., & Waterman, M. R. (2006). CYP51 from Trypanosoma cruzi: A phyla-specific residue in the b’ helix defines substrate preferences of sterol 14α-demethylase. Journal of Biological Chemistry, 281, 3577–3585.

    Article  CAS  PubMed  Google Scholar 

  20. Nes, W. D., Jayasimha, P., Zhou, W., Kanagasabai, R., **, C., Jaradat, T. T., Shaw, R. W., & Bujnicki, J. M. (2004). Sterol methyltransferase: Functional analysis of highly conserved residues by site-directed mutagenesis. Biochemistry, 43, 569–576.

    Article  CAS  PubMed  Google Scholar 

  21. Lepesheva, G. I., Nes, W. D., Zhou, W., Hill, G. C., & Waterman, M. R. (2004). CYP51 from Trypanosoma brucei is obtusifoliol-specific. Biochemistry, 43, 10789–10799.

    Article  CAS  PubMed  Google Scholar 

  22. Hargrove, T. Y., Wawrzak, Z., Liu, J., Nes, W. D., Waterman, M. R., & Lepesheva, G. I. (2011). Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14alpha-demethylase (CYP51) from Leishmania infantum. Journal of Biological Chemistry, 286, 26838–26848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, W., Nguyen, T. T., Collins, M. S., Cushion, M. T., & Nes, W. D. (2002). Evidence for multiple sterol methyl transferase pathways in Pneumocystis carinii. Lipids, 37, 1177–1186.

    Article  CAS  PubMed  Google Scholar 

  24. Najle, S. R., Molina, M. C., Ruiz-Trillo, I., & Uttaro, A. D. (2016). Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals. Open Biologys, 6. https://doi.org/10.1098/rsob.160029

    Google Scholar 

  25. Gan, Q., Zhou, W., Wang, S., Li, X., **e, Z., Wang, J., Jiang, J., & Lu, Y. (2017). A customized contamination controlling approach for culturing oleaginous Nannochloropsis oceanica. Algal Research, 27, 376–382.

    Article  Google Scholar 

  26. Nes, W. D., Zhou, W., Ganapathy, K., Liu, J., Vatsyayan, R., Chamala, S., Hernandez, K., & Miranda, M. (2009). Sterol 24-C-methyltransferase: An enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in Cryptococcus neoformans. Archives of Biochemistry and Biophysics, 481, 210–218.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, W., Song, Z., Kanagasabai, R., Liu, J., Jayasimha, P., Sinha, A., Veeramachanemi, P., Miller, M. B., & Nes, W. D. (2004). Mechanism-based enzyme inactivators of phytosterol biosynthesis. Molecules, 9, 185–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanagasabai, R., Zhou, W., Liu, J., Nguyen, T. T., Veeramachaneni, P., & Nes, W. D. (2004). Disruption of ergosterol biosynthesis, growth, and the morphological transition in Candida albicans by sterol methyltransferase inhibitors containing sulfur at C-25 in the sterol side chain. Lipids, 39, 737–746.

    Article  CAS  PubMed  Google Scholar 

  29. Nes, W. D. (2000). Sterol methyl transferase: enzymology and inhibition. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1529, 63–88.

    CAS  PubMed  Google Scholar 

  30. Zhou, W., Ramos, E., Zhu, X., Fisher, P. M., Kidane, M. E., Vanderloop, B. H., Thomas, C. D., Yan, J., Singha, U., Chaudhuri, M., et al. (2019). Steroidal antibiotics are antimetabolites of Acanthamoeba steroidogenesis with phylogenetic implications. Journal of Lipid Research, 60, 981–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vanderloop, B. H., Thomas, C. D., Zhou, W., Gillespie, A. A., Singha, U., Chaudhuri, M., Neelam, S., Niederkorn, J., & Nes, W. D. (2019). Deregulation of Acanthamoeba castellanii steroidogenesis is amoebicidal and protects cultured corneal cells from Ac attack. The FASEB Journal, 33, 634.615-634.615.

    Article  Google Scholar 

  32. Zhou, W., Debnath, A., Jennings, G., Hahn, H. J., Vanderloop, B. H., Chaudhuri, M., Nes, W. D., & Podust, L. M. (2018). Enzymatic chokepoints and synergistic drug targets in the sterol biosynthesis pathway of Naegleria fowleri. PLoS Pathogens, 14, e1007245.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kidane, M. E., Vanderloop, B. H., Zhou, W., Thomas, C. D., Ramos, E., Singha, U., Chaudhuri, M., & Nes, W. D. (2017). Sterol methyltransferase a target for anti-amoeba therapy: Towards transition state analog and suicide substrate drug design. Journal of Lipid Research, 58, 2310–2323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Debnath, A., Calvet, C. M., Jennings, G., Zhou, W., Aksenov, A., Luth, M. R., Abagyan, R., Nes, W. D., McKerrow, J. H., & Podust, L. M. (2017). CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLOS Neglected Tropical Diseases, 11, e0006104.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou, W., Cross, G. A. M., & Nes, W. D. (2007). Cholesterol import fails to prevent catalyst-based inhibition of ergosterol synthesis and cell proliferation of Trypanosoma brucei. Journal of Lipid Research, 48, 665–673.

    Article  CAS  PubMed  Google Scholar 

  36. Sharfman, M., Bar, M., Schuster, S., Leibman, M., & Avni, A. (2014). Sterol-dependent induction of plant defense responses by a microbe-associated molecular pattern from Trichoderma viride. Plant Physiology, 164, 819–827.

    Article  CAS  PubMed  Google Scholar 

  37. Behmer, S., & Nes, W. (2003). Insect sterol nutrition and physiology: A global overview. Advances in Insect Physiology, 31, 1–72.

    Article  CAS  Google Scholar 

  38. Fujimoto, Y., Kimura, M., Takasu, A., Khalifa, F. A. M., & Ikekawa, N. (1984). Mechanism of stigmasterol dealkylation in insect. Tetrahedron Letters, 25, 1501–1504.

    Article  CAS  Google Scholar 

  39. Ikekawa, N., Morisaki, M., & Fujimoto, Y. (1993). Sterol metabolism in insects: Dealkylation of phytosterol to cholesterol. Accounts of Chemical Research, 26, 139–146.

    Article  CAS  Google Scholar 

  40. Chitwood, D. J., Hutzell, P. A., & Lusby, W. R. (1985). Sterol composition of the corn cyst nematode, heterodera zeae, and corn roots. Journal of Nematology, 17, 64–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chitwood, D. J., & Lusby, W. R. (1991). Sterol composition of the corn root lesion nematode, Pratylenchus agilis, and corn root cultures. Journal of the Helminthological Society of Washington, 581, 43–50.

    Google Scholar 

  42. Ciufo, L. F., Murray, P. A., Thompson, A., Rigden, D. J., & Rees, H. H. (2011). Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm Bombyx mori. PLoS ONE. https://doi.org/10.1371/journal.pone.0021316

    Article  PubMed  PubMed Central  Google Scholar 

  43. Müller, C., Hank, E., Giera, M., & Bracher, F. (2022). Dehydrocholesterol reductase 24 (DHCR24): Medicinal chemistry, pharmacology and novel therapeutic options. Current Medicinal Chemistry, 29, 4005–4025.

    Article  PubMed  Google Scholar 

  44. Svoboda, J. A., & Robbins, W. E. (1967). Conversion of beta sitosterol to cholesterol blocked in an insect by hypocholesterolemic agents. Science, 156, 1637–1638.

    Article  CAS  PubMed  Google Scholar 

  45. Mack, Y. S. I., Dehari, M., Morooka, N., & Nagata, S. (2021). Identification and characterization of 24-dehydrocholesterol reductase (DHCR24) in the two-spotted cricket Gryllus bimaculatus. Insects, 12, 782.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chitwood, D. J., Lusby, W. R., Lozano, R., Thompson, M. J., & Svoboda, J. A. (1984). Sterol metabolism in the nematode Caenorhabditis elegans. Lipids, 19, 500–506.

    Article  CAS  PubMed  Google Scholar 

  47. Waterham, H. R., Koster, J., Romeijn, G. J., Hennekam, R. C. M., Vreken, P., Andersson, H. C., Fitzpatrick, D. R., Kelley, R. I., & Wanders, R. J. A. (2001). Mutations in the 3β-hydroxysterol Δ24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis. The American Journal of Human Genetics, 69, 685–694.

    Article  CAS  PubMed  Google Scholar 

  48. Qi, Z., Zhang, Y., Yao, K., Zhang, M., Xu, Y., Zhang, J., Bai, X., & Zu, H. (2021). DHCR24 knockdown lead to Hyperphosphorylation of Tau at Thr181, Thr231, Ser262, Ser396, and Ser422 sites by membrane lipid-raft dependent PP2A Signaling in SH-SY5Y cells. Neurochemical Research, 46, 1627–1640.

    Article  CAS  PubMed  Google Scholar 

  49. Dai, M., Zhu, X.-L., Liu, F., Xu, Q.-Y., Ge, Q.-L., Jiang, S.-H., Yang, X.-M., Li, J., Wang, Y.-H., Wu, Q.-K., et al. (2017). Cholesterol synthetase DHCR24 induced by insulin aggravates cancer invasion and progesterone resistance in endometrial carcinoma. Scientific Reports, 7, 41404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, Y., Park, Y., Hwang, J., & Kwack, K. (2018). Comparative genomic analysis of the human and nematode Caenorhabditis elegans uncovers potential reproductive genes and disease associations in humans. Physiological Genomics, 50, 1002–1014.

    Article  CAS  PubMed  Google Scholar 

  51. Fujimoto, Y., Ohyama, K., Nomura, K., Hyodo, R., Takahashi, K., Yamada, J., & Morisaki, M. (2000). Biosynthesis of sterols and ecdysteroids in Ajuga hairy roots. Lipids, 35, 279–288.

    Article  CAS  PubMed  Google Scholar 

  52. Merris, M., Wadsworth, W. G., Khamrai, U., Bittman, R., Chitwood, D. J., & Lenard, J. (2003). Sterol effects and sites of sterol accumulation in Caenorhabditis elegans: Developmental requirement for 4 alpha-methyl sterols. Journal of Lipid Research, 44, 172.

    Article  CAS  PubMed  Google Scholar 

  53. He, F. (2011). Synchronization of worm. Bio-protocol, 1, e56.

    Article  Google Scholar 

  54. Sutphin, G. L., & Kaeberlein, M. (2009). Measuring Caenorhabditis elegans life span on solid media. Journal of Visualized Experiments. https://doi.org/10.3791/1152

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shamsuzzama, L. R., Trabelcy, B., Langier Goncalves, I., Gerchman, Y., & Sapir, A. (2020). Metabolic reconfiguration in C. elegans suggests a pathway for widespread sterol auxotrophy in the animal kingdom. Current Biology, 30, 3031-3038 e3037.

    Article  CAS  PubMed  Google Scholar 

  56. Fielenbach, N., & Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes & Development, 22, 2149–2165.

    Article  CAS  Google Scholar 

  57. Bi, Y., Yang, G., Li, H., Zhang, G., & Guo, Z. (2006). Characterization of the chemical composition of lotus plumule oil. Journal of Agricultural and Food Chemistry, 54, 7672–7677.

    Article  CAS  PubMed  Google Scholar 

  58. Moreau, R. A., Whitaker, B. D., & Hicks, K. B. (2002). Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research, 41, 457–500.

    Article  CAS  PubMed  Google Scholar 

  59. Lozano, R., Lusby, W. R., Chitwood, D. J., Thompson, M. J., & Svoboda, J. A. (1985). Inhibition of C28 and C29 phytosterol metabolism by N, N-dimethyldodecanamine in the nematode Caenorhabditis elegans. Lipids, 20, 158–166.

    Article  CAS  PubMed  Google Scholar 

  60. Chitwood, D. J., & Lusby, W. R. (1991). Metabolism of plant sterols by nematodes. Lipids, 26, 619–627.

    Article  CAS  PubMed  Google Scholar 

  61. Lozano, R., Chitwood, D. J., Lusby, W. R., Thompson, M. J., Svoboda, J. A., & Patterson, G. W. (1984). Comparative effects of growth inhibitors on sterol metabolism in the nematode Caenorhabditis elegans. Comparative Biochemistry and Physiology Part C Comparative Pharmacology, 79, 21–26.

    Article  CAS  Google Scholar 

  62. Nagase, A., Kuwahara, Y., Tominaga, Y., & Sugawara, R. (1982). Nematicidal activity of akylamine against the pine wood nematode Bursaphelenchus lignicolus. Agricultural and Biological Chemistry, 46, 167–172.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their valuable improvement to this manuscript. This work was supported in part by grants from the National Key R&D Program of Chinas (2021YFA0909600 and 2021YFE0110100), the National Natural Science Foundation of China (32060061 and 32370380), the Key R&D Program of Hainan Province (ZDYF2022XDNY140), the Natural Science Foundation of Hainan Province (322QN250), the Foreign Expert Foundation of Hainan Province (G20230607016E), and the Program of Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology (SWJS202205).

Author information

Authors and Affiliations

Authors

Contributions

QG, XC, LZ, WZ and YL conceived and planned the experiments. QG, XC and LZ carried out the experiments. QC and LZ contributed to sample preparation. XC, WZ and YL contributed to the interpretation of the results. YL took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding authors

Correspondence to Wenxu Zhou or Yandu Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1: (DOCX 165 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Q., Cui, X., Zhang, L. et al. Control Phytophagous Nematodes By Engineering Phytosterol Dealkylation Caenorhabditis elegans as a Model. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00869-x

Keywords

Navigation