Log in

Heterologous Expression of PA8FAD9 and Functional Characterization of a Δ9-Fatty Acid Desaturase from a Cold-Tolerant Pseudomonas sp. A8

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Fatty acid desaturase enzymes are capable of inserting double bonds between carbon atoms of saturated fatty acyl-chains to produce unsaturated fatty acids. A gene coding for a putative Δ9-fatty acid desaturase-like protein was isolated from a cold-tolerant Pseudomonas sp. A8, cloned and heterologously expressed in Escherichia coli. The gene named as PA8FAD9 has an open reading frame of 1185 bp and codes for 394 amino acids with a predicted molecular weight of 45 kDa. The enzyme showed high Δ9-fatty acid desaturase-like protein activity and increased overall levels of cellular unsaturated fatty acids in the recombinant E. coli cells upon expression at different temperatures. The results showed that the ratio of palmitoleic to palmitic acid in the recombinant E. coli cells increased by more than twice the amount observed in the control cells at 20 °C using 0.4 mM IPTG. GCMS analysis confirmed the ability of this enzyme to convert exogenous stearic acid to oleic acid incorporated into the recombinant E. coli membrane phospholipids. It may be concluded that the PA8FAD9 gene from Pseudomonas sp. A8 codes for a putative Δ9-fatty acid desaturase protein actively expressed in E. coli under the influence of temperature and an inducer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mansilla, M., Banchio, C., & Mendoza, D. (2008). Signalling pathways controlling fatty acid desaturation. In P. Quinn & X. Wang (Eds.), Lipids in health and disease (Vol. 49, pp. 71–99). Netherlands: Springer.

    Chapter  Google Scholar 

  2. Mansilla, M. C., & de Mendoza, D. (2005). The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Archives of Microbiology, 183(4), 229–235.

    Article  CAS  Google Scholar 

  3. Wan, X., Liang, Z., Gong, Y., Zhang, Y., & Jiang, M. (2013). Characterization of three Δ9-fatty acid desaturases with distinct substrate specificity from an oleaginous fungus Cunninghamella echinulata. Molecular Biology Reports, 40(7), 4483–4489.

    Article  CAS  Google Scholar 

  4. Li, Y., Xu, X., Dietrich, M., Urlacher, V. B., Schmid, R. D., Ouyang, P., et al. (2009). Identification and functional expression of a Δ9-fatty acid desaturase from the marine bacterium Pseudoalteromonas sp. MLY15. Journal of Molecular Catalysis B, 56(2), 96–101.

    Article  CAS  Google Scholar 

  5. Murata, N., & Wada, H. (1995). Acyl-lipid desaturases and their importance in the tolerance and acclimatisation to the cold of cyanobacteria. Biochemical Journal, 308(Pt 1), 1.

    Article  CAS  Google Scholar 

  6. Shanklin, J., & Cahoon, E. B. (1998). Desaturation and related modifications of fatty acids 1. Annual Review of Plant Biology, 49(1), 611–641.

    Article  CAS  Google Scholar 

  7. Altabe, S. G., Aguilar, P., Caballero, G. M., & de Mendoza, D. (2003). The Bacillus subtilis acyl lipid desaturase is a Δ5 desaturase. Journal of Bacteriology, 185(10), 3228–3231.

    Article  CAS  Google Scholar 

  8. Mansilla, M. C., Cybulski, L. E., Albanesi, D., & de Mendoza, D. (2004). Control of membrane lipid fluidity by molecular thermosensors. Journal of Bacteriology, 186(20), 6681–6688.

    Article  CAS  Google Scholar 

  9. Hashimoto, K., Yoshizawa, A. C., Saito, K., Yamada, T., & Kanehisa, M. (2006). The repertoire of desaturases for unsaturated fatty acid synthesis in 397 genomes. Genome Informatics, 17(1), 173–183.

    CAS  Google Scholar 

  10. Zhu, K., Choi, K. H., Schweizer, H. P., Rock, C. O., & Zhang, Y. M. (2006). Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Molecular Microbiology, 60(2), 260–273.

    Article  CAS  Google Scholar 

  11. Flowers, M. T., & Ntambi, J. M. (2008). Role of stearoyl-coenzyme a desaturase in regulating lipid metabolism. Current Opinion in Lipidology, 19(3), 248.

    Article  CAS  Google Scholar 

  12. Li, Y., Dietrich, M., Schmid, R. D., He, B., Ouyang, P., & Urlacher, V. B. (2008). Identification and functional expression of a Δ9-fatty acid desaturase from Psychrobacter urativorans in Escherichia coli. Lipids, 43(3), 207–213.

    Article  CAS  Google Scholar 

  13. Thompson, Julie, D., Higgins, D. G., & Gibson, T. J. (1994). Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  Google Scholar 

  14. Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132.

    Article  CAS  Google Scholar 

  15. Bendtsen, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340(4), 783–795.

    Article  Google Scholar 

  16. Schägger, H., & Von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166(2), 368–379.

    Article  Google Scholar 

  17. Garba, L., Wahhida, L., Ali, M. S. M., Oslan, S. N., & Rahman, R. N. Z. R. A. (2016). Unsaturated fatty acids in Antarctic Bacteria. Research Journal of Microbiology, 11, 146–152.

    Article  Google Scholar 

  18. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X. version 2.0. Bioinformatics, 23(21), 2947–2948.

    Article  CAS  Google Scholar 

  19. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  Google Scholar 

  20. Möller, S., Croning, M. D., & Apweiler, R. (2001). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17(7), 646–653.

    Article  Google Scholar 

  21. Morita, R. Y., & Moyer, C. L. (2001). Psychrophiles. In S. A. Levin (Ed.), Encyclopedia of biodiversity (2nd ed., pp. 298–303). Waltham: Academic Press.

    Chapter  Google Scholar 

  22. Warude, D., Joshi, K., & Harsulkar, A. (2006). Polyunsaturated fatty acids: biotechnology. Critical Reviews in Biotechnology, 26(2), 83–93.

    Article  CAS  Google Scholar 

  23. Shimizu S, Kobayashi M (2002) Δ9-desaturase gene. US Patent 6,448,055, 10 Sep 2002.

  24. Chintalapati, S., Prakash, J., Gupta, P., Ohtani, S., Suzuki, I., Sakamoto, T., et al. (2006). A novel Delta9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids. Biochemical Journal, 398, 207–214.

    Article  CAS  Google Scholar 

  25. Maali, R., Schimschilaschvili, H., Pchelkin, V., Tsydendambaev, V., Nosov, A., Los, D., et al. (2007). Comparative expression in Escherichia coli of the native and hybrid genes for acyl-lipid Δ9 desaturase. Russian Journal of Genetics, 43(2), 121–126.

    Article  CAS  Google Scholar 

  26. Saito, H. E., Harp, J. R., & Fozo, E. M. (2014). Incorporation of exogenous fatty acids protects Enterococcus faecalis from membrane-damaging agents. Applied and Environmental Microbiology, 80(20), 6527–6538.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Putra Grant, University Putra Malaysia (GP-IPS/2016/9471000) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Noor Zaliha Raja Abdul Rahman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garba, L., Ali, M.S.M., Oslan, S.N. et al. Heterologous Expression of PA8FAD9 and Functional Characterization of a Δ9-Fatty Acid Desaturase from a Cold-Tolerant Pseudomonas sp. A8. Mol Biotechnol 58, 718–728 (2016). https://doi.org/10.1007/s12033-016-9971-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9971-9

Keywords

Navigation