Log in

A novel α,β-unsaturated ketone inhibits leukemia cell growth as PARP1 inhibitor

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Leukemia is a malignant disease of the hematopoietic system, in which clonal leukemia cells accumulate and inhibit normal hematopoiesis in the bone marrow and other hematopoietic tissues as a result of uncontrolled proliferation and impaired apoptosis, among other mechanisms. In this study, the anti-leukemic effect of a compound (SGP-17-S) extracted from Chloranthus multistachys, a plant with anti-inflammatory, antibacterial and anti-tumor effects, was evaluated. The effect of SGP-17-S on the viability of leukemic cell was demonstrated by MTT assay, cell cycle, and apoptosis were assessed by flow cytometry using PI staining and Annexin V/PI double staining. Combinations of network pharmacology and cellular thermal shift assay (CETSA) with western blot were used to validate agents that act on leukemia targets. The results showed that SGP-17-S inhibited the growth of leukemia cells in a time- and dose-dependent manner. SGP-17-S blocked HEL cells in the G2 phase, induced apoptosis, decreased Bcl-2 and caspase-8 protein expression, and increased Bax and caspase-3 expression. In addition, CETSA revealed that PARP1 is an important target gene for the inhibition of HEL cell growth, and SGP-17-S exerted its action on leukemia cells by targeting PARP1. Therefore, this study might provide new solutions and ideas for the treatment of leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data used in this manuscript are available on request.

References

  1. Pelcovits A, Niroula R. Acute myeloid leukemia: a review. R I Med J. 2020;103(3):38–40.

    Google Scholar 

  2. Omer FAA, Hashim NM, Ibrahim MY, et al. Beta-mangostin demonstrates apoptogenesis in murine leukaemia (WEHI-3) cells in vitro and in vivo. BMC Complement Altern Med. 2017;17(1):366.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Norouzi S, Norouzi M, Amini M, et al. Two COX-2 inhibitors induce apoptosis in human erythroleukemia K562cells by modulating NF-κB and FHC pathways. Daru. 2016;24:1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article  PubMed  Google Scholar 

  5. Cao H, Xu Y, de Necochea-Campion R, et al. Application of vitamin D and vitamin D analogs in acute myelogenous leukemia. Exp Hematol. 2017;50:1–12.

    Article  CAS  PubMed  Google Scholar 

  6. DiNardo CD, Cortes JE. New treatment for acute myelogenous leukemia. Expert Opin Pharmacother. 2015;16(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  7. Floren M, Gillette JM. Acute myeloid leukemia: therapy resistance and a potential role for tetraspanin membrane scaffolds. Int J Biochem Cell Biol. 2021;137: 106029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Devine SM, Larson RA. Acute leukemia in adults: recent developments in diagnosis and treatment. CA Cancer J Clin. 1994;44(6):326–52.

    Article  CAS  PubMed  Google Scholar 

  9. Seth R, Singh A. Leukemias in Children. Indian J Pediatr. 2015;82(9):817–24.

    Article  PubMed  Google Scholar 

  10. Major CK, Kantarjian H, Sasaki K, et al. Survivorship in AML: a landmark analysis on the outcomes of acute myelogenous leukemia patients after maintaining complete remission for at least 3 years. Leuk Lymphoma. 2020;61(13):3120–7.

    Article  PubMed  Google Scholar 

  11. Kayser S, Levis MJ. Updates on targeted therapies for acute myeloid leukaemia. Br J Haematol. 2022;196(2):316–28.

    Article  CAS  PubMed  Google Scholar 

  12. Stubbins RJ, Francis A, Kuchenbauer F, et al. Management of Acute myeloid leukemia: a review for general practitioners in oncology. Curr Oncol. 2022;29(9):6245–59.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grimwade D, Ivey A, Huntly BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rose-Inman H, Kuehl D. Acute leukemia. Hematol Oncol Clin North Am. 2017;31(6):1011–28.

    Article  PubMed  Google Scholar 

  15. Ding HM, Chen XJ, Chen HM, et al. Effect of Sargassum fusiforme polysaccharide on apoptosis and its possible mechanism in human erythroleukemia cells. Chin J Nat Med. 2020;18(10):749–59.

    CAS  PubMed  Google Scholar 

  16. Ganesan S, Mathews V, Vyas N. Microenvironment and drug resistance in acute myeloid leukemia: do we know enough? Int J Cancer. 2022;150(9):1401–11.

    Article  CAS  PubMed  Google Scholar 

  17. Huang X, **ao F, Li Y, et al. Bypassing drug resistance by triggering necroptosis: recent advances in mechanisms and its therapeutic exploitation in leukemia. J Exp Clin Cancer Res. 2018;37(1):310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weiming Huang FC, Bian Yuting, Zhang Ruizeng, et al. Chemical constituents from Chloranthus multistachys and their anti-inflammatory activity. Nat Product Res Dev. 2020;32(10):1688–97.

    Google Scholar 

  19. Yang X. Bioactive material basis of medicinal plants in genus Chloranthus. Mod Chin Med. 2017;19(04):459–95.

    Google Scholar 

  20. Xu JB, Yu J, Zhang WQ, et al. Constituents from Chloranthus multistachys and their cytotoxic activities against various human cancer cell lines. J Asian Nat Prod Res. 2023;25(4):330–41.

    Article  CAS  PubMed  Google Scholar 

  21. Rose M, Burgess JT, O’Byrne K, et al. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8: 564601.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meyer-Ficca ML, Meyer RG, Jacobson EL, et al. Poly(ADP-ribose) polymerases: managing genome stability. Int J Biochem Cell Biol. 2005;37(5):920–6.

    Article  CAS  PubMed  Google Scholar 

  23. Csizmar CM, Saliba AN, Swisher EM, et al. PARP inhibitors and myeloid neoplasms: a double-edged sword. Cancers (Basel). 2021;13(24):6385.

    Article  CAS  PubMed  Google Scholar 

  24. Kontandreopoulou CN, Diamantopoulos PT, Tiblalexi D, et al. PARP1 as a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood Adv. 2021;5(22):4794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gil-Kulik P, Dudzińska E, Radzikowska-Büchner E, et al. Different regulation of PARP1, PARP2, PARP3 and TRPM2 genes expression in acute myeloid leukemia cells. BMC Cancer. 2020;20(1):435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Padella A, Rorà Ghelli Luserna Di, A, Marconi G, et al. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol. 2022;15(1):10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nemkov T, D’Alessandro A, Reisz JA. Metabolic underpinnings of leukemia pathology and treatment. Cancer Rep (Hoboken). 2019;2(2): e1139.

    Article  PubMed  Google Scholar 

  28. Gale RP. Can Immune therapy cure acute myeloid leukemia? Curr Treat Options Oncol. 2023;24(5):381–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maleknia M, Valizadeh A, Pezeshki SMS, Saki N. Immunomodulation in leukemia: cellular aspects of anti-leukemic properties. Clin Transl Oncol. 2020;22(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  30. Karantanou C, Godavarthy PS, Krause DS. Targeting the bone marrow microenvironment in acute leukemia. Leuk Lymphoma. 2018;59(11):2535–45.

    Article  PubMed  Google Scholar 

  31. Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8(4):603–19.

    Article  CAS  PubMed  Google Scholar 

  32. Kaloni D, Diepstraten ST, Strasser A, et al. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis. 2023;28(1–2):20–38.

    Article  CAS  PubMed  Google Scholar 

  33. Bah N, Maillet L, Ryan J, et al. Bcl-xL controls a switch between cell death modes during mitotic arrest. Cell Death Dis. 2014;5(6): e1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beyfuss K, Hood DA. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep. 2018;23(1):100–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teyssonneau D, Margot H, Cabart M, et al. Prostate cancer and PARP inhibitors: progress and challenges. J Hematol Oncol. 2021;14(1):51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cortesi L, Rugo HS, Jackisch C. An overview of PARP inhibitors for the treatment of breast cancer. Target Oncol. 2021;16(3):255–82.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Risdon EN, Chau CH, Price DK, et al. PARP inhibitors and prostate cancer: to infinity and beyond BRCA. Oncologist. 2021;26(1):e115–29.

    Article  CAS  PubMed  Google Scholar 

  38. Slade D. Mitotic functions of poly(ADP-ribose) polymerases. Biochem Pharmacol. 2019;167:33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Engbrecht M, Mangerich A. The nucleolus and PARP1 in cancer biology. Cancers (Basel). 2020;12(7):1813.

    Article  CAS  PubMed  Google Scholar 

  40. Maluchenko NV, Feofanov AV, Studitsky VM. PARP-1-associated pathological processes: inhibition by natural polyphenols. Int J Mol Sci. 2021;22(21):11441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dréan A, Lord CJ, Ashworth A. PARP inhibitor combination therapy. Crit Rev Oncol Hematol. 2016;108:73–85.

    Article  PubMed  Google Scholar 

  42. Lin S, Zhang L, Zhang X, et al. Synthesis of novel dual target inhibitors of PARP and HSP90 and their antitumor activities. Bioorg Med Chem. 2020;28(9): 115434.

    Article  CAS  PubMed  Google Scholar 

  43. Kim D, Nam HJ. PARP inhibitors: clinical limitations and recent attempts to overcome them. Int J Mol Sci. 2022;23(15):8412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol. 2022. https://doi.org/10.1083/jcb.202201159.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Saraei R, Marofi F, Naimi A, et al. Leukemia therapy by flavonoids: future and involved mechanisms. J Cell Physiol. 2019;234(6):8203–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figure 5H is created with figdraw.com (https://www.figdraw.com/).

Funding

The work was supported by the Department of Science and Technology of Guizhou Province (No.QKHZC[2021]YB450, and QKHZC[2022]YB189, QKHZC[2020]4Y161, QKHZC[2024]YB068), the Guizhou Provincial Committee Organization Department (No. QKHPTRC-GCC[2022]034-1), the Science and Social Development of Anshun City (ASKS(2021)19).

Author information

Authors and Affiliations

Authors

Contributions

Data collection: WZ and MM; data analysis: WZ, JY, and SC; experimental design: CY, HL, and BS; project design: WL, GL, and ZL; data interpretation and manuscript writing: WZ; manuscript editing: JY and GL.

Corresponding authors

Correspondence to Chen Yan, Heng Luo or Baofei Sun.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Mo, M., Yu, J. et al. A novel α,β-unsaturated ketone inhibits leukemia cell growth as PARP1 inhibitor. Med Oncol 41, 113 (2024). https://doi.org/10.1007/s12032-024-02324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02324-6

Keywords

Navigation