Log in

Hypoxia-induced PPFIA4 accelerates the progression of ovarian cancer through glucose metabolic reprogramming

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Dysregulated glycolysis promotes growth and metastasis, which is one of the metabolic characteristics of ovarian cancer. Based on bioinformatics analysis, liprin-alpha-4 (PPFIA4) is a gene associated with hypoxia, and we aimed to investigate the potential mechanism of PPFIA4 during the reprogramming of glucose metabolism in ovarian cancer cells. Currently, the cell viability of ovarian cancer cells under the hypoxia treatment was evaluated by CCK-8 assay, and cell migration and invasion were measured by transwell assay and western blot. The effects of hypoxia treatment on glucose uptake, lactate production, extracellular acidification rate (ECAR), adenosine triphosphate (ATP), reactive oxygen species (ROS), Nicotinamide adenine dinucleotide phosphate (NADPH) and its oxidized form NADP + , and oxygen consumption rate (OCR) in ovarian cancer cells were examined. Then PPFIA4 was identified through bioinformatic analysis, and the regulatory effects of PPFIA4 on glucose metabolic reprogramming. Our data suggested that hypoxia enhanced the migration and invasion ability of ovarian cancer cells in vitro, and promoted the glucose metabolic reprogramming of ovarian cancer cells. Ovarian cancer cell viability, migration, and invasion were inhibited after PPFIA4 knockdown. Inhibition of PPFIA4 inhibited hypoxic-induced glucose metabolic reprogramming in ovarian cancer cells. In addition, PPFIA4 was found to bind to hypoxia-inducible factor 1alpha (HIF1A), and HIF1A prominently induced PPFIA4 expression. Collectively, HIF1A mediated upregulation of PPFIA4 and promoted reprogramming of glucose metabolism in ovarian cancer cells. Therefore, PPFIA4 may be a therapeutic target for ovarian cancer intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mennerich D, Kubaichuk K, Kietzmann T. DUBs, hypoxia, and cancer. Trends Cancer. 2019;5:632.

    Article  CAS  PubMed  Google Scholar 

  2. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352:175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. **g X, Yang F, Shao C, Wei K, **e M, Shen H, Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:157.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bao MH, Wong CC. Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells. 2021;10:1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu G, Wei Y, Kang Y. The multifaceted role of MTDH/AEG-1 in cancer progression. Clin Cancer Res. 2009;15:5615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masoud GN, Li W. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5:378.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tang BL. Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol. 2020;235:7653.

    Article  CAS  PubMed  Google Scholar 

  8. Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12:152.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zheng X, Boyer L, ** M, Mertens J, Kim Y, Ma L, Ma L, Hamm M, Gage FH, Hunter T. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife. 2016;5:e13374.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li CH, Liao CC. The metabolism reprogramming of microRNA Let-7-mediated glycolysis contributes to autophagy and tumor progression. Int J Mol Sci. 2021;23:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. **ang S, Gu H, ** L, Thorne RF, Zhang XD, Wu M. LncRNA IDH1-AS1 links the functions of c-Myc and HIF1alpha via IDH1 to regulate the Warburg effect. Proc Natl Acad Sci USA. 2018;115:E1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hayashi Y, Yokota A, Harada H, Huang G. Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1alpha in cancer. Cancer Sci. 2019;110:1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang J, Ren B, Yang G, Wang H, Chen G, You L, Zhang T, Zhao Y. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci. 2020;77:305.

    Article  CAS  PubMed  Google Scholar 

  14. Liang Y, Wang H, Chen B, Mao Q, **a W, Zhang T, Song X, Zhang Z, Xu L, Dong G, Jiang F. circDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing TXNIP expression. Mol Ther-Nucl Acids. 2021;23:355.

    Article  CAS  Google Scholar 

  15. Zhao H, Yan G, Zheng L, Zhou Y, Sheng H, Wu L, Zhang Q, Lei J, Zhang J, **n R, Jiang L, Zhang X, Chen Y, Wang J, Xu Y, Li D, Li Y. STIM1 is a metabolic checkpoint regulating the invasion and metastasis of hepatocellular carcinoma. Theranostics. 2020;10:6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamasaki A, Nakayama K, Imaizumi A, Kawamoto M, Fujimura A, Oyama Y, Nagai S, Yanai K, Onishi H. Liprin-alpha4 as a possible new therapeutic target for pancreatic cancer. Anticancer Res. 2017;37:6649.

    CAS  PubMed  Google Scholar 

  17. Onishi H, Yamasaki A, Nakamura K, Ichimiya S, Yanai K, Umebayashi M, Nagai S, Morisaki T. Liprin-alpha4 as a new therapeutic target for SCLC as an upstream mediator of HIF1alpha. Anticancer Res. 2019;39:1179.

    Article  CAS  PubMed  Google Scholar 

  18. Mattauch S, Sachs M, Behrens J. Liprin-alpha4 is a new hypoxia-inducible target gene required for maintenance of cell-cell contacts. Exp Cell Res. 2010;316:2883.

    Article  CAS  PubMed  Google Scholar 

  19. Gottmann P, Ouni M, Zellner L, Jahnert M, Rittig K, Walther D, Schurmann A. Polymorphisms in miRNA binding sites involved in metabolic diseases in mice and humans. Sci Rep. 2020;10:7202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang J, Yang M, Liu Z, Li X, Wang J, Fu N, Cao T, Yang X. PPFIA4 promotes colon cancer cell proliferation and migration by enhancing tumor glycolysis. Front Oncol. 2021;11:653200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-analyzed tumors. Cell. 2018;173:530.

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava C, Irshad K, Gupta Y, Sarkar C, Suri A, Chattopadhyay P, Sinha S, Chosdol K. NFsmall ka, CyrillicB is a critical transcriptional regulator of atypical cadherin FAT1 in glioma. BMC Cancer. 2020;20:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranasic D, Santana-Garcia W, Tan G, Cheneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman WW, Mathelier A. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87.

    CAS  PubMed  Google Scholar 

  24. Zhao S, Guan B, Mi Y, Shi D, Wei P, Gu Y, Cai S, Xu Y, Li X, Yan D, Huang M, Li D. LncRNA MIR17HG promotes colorectal cancer liver metastasis by mediating a glycolysis-associated positive feedback circuit. Oncogene. 2021;40:4709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bi J, Bi F, Pan X, Yang Q. Establishment of a novel glycolysis-related prognostic gene signature for ovarian cancer and its relationships with immune infiltration of the tumor microenvironment. J Transl Med. 2021;19:382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi J, Ye J, Fei H, Jiang SH, Wu ZY, Chen YP, Zhang LW, Yang XM. YWHAZ promotes ovarian cancer metastasis by modulating glycolysis. Oncol Rep. 2019;41:1101.

    CAS  PubMed  Google Scholar 

  27. Dorayappan K, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, Cohn DE, Selvendiran K. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene. 2018;37:3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Packer M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: modulation by SGLT2 inhibitors and hypoxia mimetics. Am J Kidney Dis. 2021;77:280.

    Article  CAS  PubMed  Google Scholar 

  29. Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Therapeut. 2016;164:152.

    Article  CAS  Google Scholar 

  30. Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. J Exp Clin Cancer Res. 2020;39:224.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Basavaraju AM, Shivanna N, Yadavalli C, Garlapati PK, Raghavan AK. Ameliorative effect of Ananas comosus on cobalt chloride-induced hypoxia in Caco2 cells via HIF-1alpha, GLUT 1, VEGF, ANG and FGF. Biol Trace Elem Res. 2021;199:1345.

    Article  CAS  PubMed  Google Scholar 

  32. Acker T, Plate KH. Hypoxia and hypoxia inducible factors (HIF) as important regulators of tumor physiology. Cancer Treat Res. 2004;117:219.

    Article  CAS  PubMed  Google Scholar 

  33. Airley RE, Loncaster J, Raleigh JA, Harris AL, Davidson SE, Hunter RD, West CML, Stratford IJ. GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer. 2003;104:85.

    Article  CAS  PubMed  Google Scholar 

  34. Sun HL, Liu YN, Huang YT, Pan SL, Huang DY, Guh JH, Lee FY, Kuo SC, Teng CM. YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene. 2007;26:3941.

    Article  CAS  PubMed  Google Scholar 

  35. Zeng L, Zhou HY, Tang NN, Zhang WF, He GJ, Hao B, Feng YD, Zhu H. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells. World J Gastroenterol. 2016;22:4868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Couto-Vieira J, Nicolau-Neto P, Costa EP, Figueira FF, Simão TDA, Okorokova-Façanha AL, Ribeiro Pinto LF, Façanha AR. Multi-cancer V-ATPase molecular signatures: a distinctive balance of subunit C isoforms in esophageal carcinoma. EBioMedicine. 2020;51:102581.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, Boutros M, Niehrs C. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science. 2010;327:459.

    Article  CAS  PubMed  Google Scholar 

  38. Matassa DS, Amoroso MR, Maddalena F, Landriscina M, Esposito F. New insights into TRAP1 pathway. Am J Cancer Res. 2012;2:235.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoshida S, Tsutsumi S, Muhlebach G, Sourbier C, Lee MJ, Lee S, Vartholomaiou E, Tatokoro M, Beebe K, Miyajima N, Mohney RP, Chen Y, Hasumi H, Xu W, Fukushima H, Nakamura K, Koga F, Kihara K, Trepel J, Picard D, Neckers L. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc Natl Acad Sci USA. 2013;110:E1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor (∗). J Biol Chem. 1995;270:3574.

    Article  CAS  PubMed  Google Scholar 

  41. Jiao HL, Weng BS, Yan SS, Lin ZM, Wang SY, Chen XP, Liang GH, Li XQ, Zhao WY, Huang JY, Zhang D, Zhang LJ, Han FY, Li SN, Chen LJ, Zhu JH, He WF, Ding YQ, Ye YP. Upregulation of OSBPL3 by HIF1A promotes colorectal cancer progression through activation of RAS signaling pathway. Cell Death Dis. 2020;11:571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Liu L, **a L, Wu N, Wang Y, Li H, Chen X, Zhang X, Liu Z, Zhu M, Liao Q, Wang J. TRPM7 silencing modulates glucose metabolic reprogramming to inhibit the growth of ovarian cancer by enhancing AMPK activation to promote HIF-1alpha degradation. J Exp Clin Cancer Res. 2022;41:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li L, Yang L, Fan Z, Xue W, Shen Z, Yuan Y, Sun X, Wang D, Lian J, Wang L, Zhao J, Zhang Y. Hypoxia-induced GBE1 expression promotes tumor progression through metabolic reprogramming in lung adenocarcinoma. Signal Transduct Target Ther. 2020;5:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao R, Feng T, Gao L, Sun F, Zhou Q, Wang X, Liu J, Zhang W, Wang M, **ong X, Jia W, Chen W, Wang L, Han B. PPFIA4 promotes castration-resistant prostate cancer by enhancing mitochondrial metabolism through MTHFD2. J EXP Clin Cancer Res. 2022;41:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Haiyan Scientific Research Fund Youth Project of Harbin Medical University Cancer Hospital (Grant Number JJQN2019-03); Heilongjiang Natural Science Foundation (Grant Number YQ2019H025).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, interpretation of the studies and analysis of the data and review of the manuscript. ST drafted the work and revised it critically for important intellectual content; HY and YX were responsible for the acquisition and analysis of data for the work; YZ was responsible for the interpretation of data for the work; GL made substantial contributions to the conception or design of the work.

Corresponding author

Correspondence to Ge Lou.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S., Yu, H., Xu, Y. et al. Hypoxia-induced PPFIA4 accelerates the progression of ovarian cancer through glucose metabolic reprogramming. Med Oncol 40, 272 (2023). https://doi.org/10.1007/s12032-023-02144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02144-0

Keywords

Navigation