Log in

Recent advancement of HDAC inhibitors against breast cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Recent studies highlight the great potential impact of HDAC inhibitors (HDACis) in suppressing TNBC, even though clinical trials including a single HDACis demonstrated unsatisfactory outcomes against TNBC. New compounds created to achieve isoform selectivity and/or a polypharmacological HDAC strategy have also produced interesting results. The current study discusses the HDACis pharmacophoric models and the structural alterations that produced drugs with strong inhibitory effects on TNBC progression. With more than 2 million new cases reported in 2018, breast cancer—the most common cancer among women worldwide—poses a significant financial burden on an already deteriorating public health system. Due to a lack of therapies being developed for triple-negative breast cancers and the development of resistance to the current treatment options, it is imperative to plan novel therapeutics in order to bring new medications to the pipeline. Additionally, HDACs deacetylate a large number of nonhistone cellular substrates that control a variety of biological processes, such as the beginning and development of cancer. The significance of HDACs in cancer and the therapeutic potential of HDAC inhibitor. Furthermore, we also reported molecular docking study with four HDAC inhibitors and performed molecular dynamic stimulation of the best dock score compound. Among the four ligands belinostat compound showed best binding affinity with histone deacetylase protein which was -8.7 kJ/mol. It also formed five conventional hydrogen bond with Gly 841, His 669, His 670, pro 809, and His 709 amino acid residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. Duranti S, Fabi A, Filetti M, Falcone R, Lombardi P, Daniele G, Franceschini G, Carbognin L, Palazzo A, Garganese G, et al. Breast cancer drug approvals issued by EMA: a review of clinical trials. Cancers. 2021;13:5198. https://doi.org/10.3390/cancers13205198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zolota V, Tzelepi V, Piperigkou Z, Kourea H, Papakonstantinou E, Argentou MI, Karamanos NK. Epigenetic alterations in triple-negative breast cancer—the critical role of extracellular matrix. Cancers. 2021;13:713. https://doi.org/10.3390/cancers13040713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoshida M, Kudo N, Kosono S, Ito A. Chemical and structural biology of protein lysine deacetylases. Proc Jpn Acad Ser B. 2017;93:297–321. https://doi.org/10.2183/pjab.93.019.

    Article  CAS  Google Scholar 

  4. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389:349–52. https://doi.org/10.1038/38664.

    Article  CAS  PubMed  Google Scholar 

  5. Jenke R, Reßing N, Hansen F, Aigner A, Büch T. Anticancer therapy with HDAC inhibitors: mechanism-based combination strategies and future perspectives. Cancers. 2021;13:634. https://doi.org/10.3390/cancers13040634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Terranova-Barberio M, Thomas S, Ali N, Pawlowska N, Park J, Krings G, Rosenblum MD, Budillon A, Munster PN. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget. 2017;8:114156–72. https://doi.org/10.18632/oncotarget.23169.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maiti A, Qi Q, Peng X, Yan L, Takabe K, Hait NC. Class I histone deacetylase inhibitor suppresses vasculogenic mimicry by enhancing the expression of tumor suppressor and anti-angiogenesis genes in aggressive human TNBC cells. Int J Oncol. 2019;55:116–30. https://doi.org/10.3892/ijo.2019.4796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA. 2004;101:15064–9. https://doi.org/10.1073/pnas.0404603101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bressi JC, Jennings AJ, Skene R, Wu Y, Melkus R, De Jong R, O’Connell S, Grimshaw CE, Navre M, Gangloff AR. Exploration of the HDAC2 foot pocket: synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg Med Chem Lett. 2010;20:3142–5. https://doi.org/10.1016/j.bmcl.2010.03.091.

    Article  CAS  PubMed  Google Scholar 

  10. Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem. 2016;121:451–83. https://doi.org/10.1016/j.ejmech.2016.05.047.

    Article  CAS  PubMed  Google Scholar 

  11. Ho TCS, Chan AHY, Ganesan A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J Med Chem. 2020;63:12460–84. https://doi.org/10.1021/acs.jmedchem.0c00830.

    Article  CAS  PubMed  Google Scholar 

  12. Connolly RM, Rudek MA, Piekarz R. Entinostat: a promising treatment option for patients with advanced breast cancer. Future Oncol. 2017;13:1137–48. https://doi.org/10.2217/fon-2016-0526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang MC, Fang Y, Wang L, Cheng S, Fu D, He Y, Zhao Y, Wang CF, Jiang XF, Song Q, et al. Clinical efficacy and molecular biomarkers in a phase II study of tucidinostat plus R-CHOP in elderly patients with newly diagnosed diffuse large B-cell lymphoma. Clin Epigenet. 2020;12:160. https://doi.org/10.1186/s13148-020-00948-9.

    Article  CAS  Google Scholar 

  14. Santo L, Hideshima T, Kung A, Tseng JC, Tamang D, Yang M, Jarpe M, Van Duzer JH, Mazitschek R, Ogier WC, et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012;119:2579–89. https://doi.org/10.1182/blood-2011-10-387365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang P, Almeciga-Pinto I, Jarpe M, Van Duzer JH, Mazitschek R, Yang M, Jones SS, Quayle SN. Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget. 2017;8:2694–707. https://doi.org/10.18632/oncotarget.13738.

    Article  PubMed  Google Scholar 

  16. Nawar N, Bukhari S, Adile AA, Suk Y, Manaswiyoungkul P, Toutah K, Olaoye OO, Raouf YS, Sedighi A, Garcha HK, et al. Discovery of HDAC6-selective inhibitor NN-390 with in vitro efficacy in group 3 medulloblastoma. J Med Chem. 2022;65:3193–217. https://doi.org/10.1021/acs.jmedchem.1c01585.

    Article  CAS  PubMed  Google Scholar 

  17. Li S, Zhao C, Zhang G, Xu Q, Liu Q, Zhao W, Chou CJ, Zhang Y. Development of selective HDAC6 inhibitors with in vitro and in vivo anti-multiple myeloma activity. Bioorg Chem. 2021;116:105278. https://doi.org/10.1016/j.bioorg.2021.105278.

    Article  CAS  PubMed  Google Scholar 

  18. Depetter Y, Geurs S, De Vreese R, Goethals S, Vandoorn E, Laevens A, Steenbrugge J, Meyer E, De Tullio P, Bracke M, et al. Selective pharmacological inhibitors of HDAC6 reveal biochemical activity but functional tolerance in cancer models. Int J Cancer. 2019;145:735–47. https://doi.org/10.1002/ijc.32169.

    Article  CAS  PubMed  Google Scholar 

  19. Chan TS, Tse E, Kwong YL. Chidamide in the treatment of peripheral T-cell lymphoma. OncoTargets Ther. 2017;10:347–52. https://doi.org/10.2147/OTT.S93528.

    Article  CAS  Google Scholar 

  20. Millán-Zambrano G, Burton A, Bannister AJ, et al. Histone post-translational modifications — cause and consequence of genome function. Nat Rev Genet. 2022;23:563–80.

    PubMed  Google Scholar 

  21. Wu S, Luo Z, Yu PJ, **e H, He YW. Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals. Biol Chem. 2016;397:75–83. https://doi.org/10.1515/hsz-2015-0215.

    Article  CAS  PubMed  Google Scholar 

  22. Woo YM. Epigenetic regulation in cystogenesis. Adv Exp Med Biol. 2016;933:59–68.

    CAS  PubMed  Google Scholar 

  23. Li H, Gong Y, Zhong Q. In vivo anticancer potential of hydroxamic acid derivatives. Curr Top Med Chem. 2021;21:1737–55. https://doi.org/10.2174/1568026621666210813105240.

    Article  CAS  PubMed  Google Scholar 

  24. Carlisi D, Lauricella M, D’Anneo A, Buttitta G, Emanuele S, di Fiore R, Martinez R, Rolfo C, Vento R, Tesoriere G. The synergistic effect of SAHA and parthenolide in MDA-MB231 breast cancer cells. J Cell Physiol. 2015;230:1276–89. https://doi.org/10.1002/jcp.24863.

    Article  CAS  PubMed  Google Scholar 

  25. Chiu HW, Yeh YL, Wang YC, Huang WJ, Chen YA, Chiou YS, Ho SY, Lin P, Wang YJ. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, enhances radiosensitivity and suppresses lung metastasis in breast cancer in vitro and in vivo. PLoS ONE. 2013;8:e76340. https://doi.org/10.1371/journal.pone.0076340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sabnis GJ, Goloubeva O, Chumsri S, Nguyen N, Sukumar S, Brodie AMH. Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res. 2011;71:1893–903. https://doi.org/10.1158/0008-5472.CAN-10-2458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar A, Vigato C, LolliKumar DML. Phenothiazines as anti-cancer agents: SAR overview and synthetic strategies. Eur J Med Chem. 2023;254:115337. https://doi.org/10.1016/j.ejmech.2023.115337.

    Article  CAS  PubMed  Google Scholar 

  28. Nyarko RO, Awuchi CG, Kumar R, Boateng E, Kahwa I, Boateng PO, Saha P. Evaluation of cafeteria diet in experimental animal with plant extract of calotropis procera for obesity parameter. J for Res Appl Sci and Biotechnol. 2022;1(3):107–13.

    Google Scholar 

  29. Halder AK, Mallick S, Shikha D, Saha A, Krishna D, Jha T. Design of dual MMP-2/HDAC-8 inhibitors by pharmacophore map**, molecular docking, synthesis and biological activity. RSC Adv. 2015;5:72373–86.

    CAS  Google Scholar 

  30. Kumar S, Keshamma E, Trivedi U, Janjua D, Shaw P, Kumar R, Saha P. A meta analysis of different herbs (leaves, roots, stems) used in treatment of cancer cells. J for Res Appl Sci and Biotechnol. 2022;1(3):92–101.

    Google Scholar 

  31. De Cremoux P, Dalvai M, N’Doye O, Moutahir F, Rolland G, Chouchane-Mlik O, Assayag F, Lehmann-Che J, Kraus-Berthie L, Nicolas A, et al. HDAC inhibition does not induce estrogen receptor in human triple-negative breast cancer cell lines and patient-derived xenografts. Breast Cancer Res Treat. 2015;149:81–9. https://doi.org/10.1007/s10549-014-3233-y.

    Article  CAS  PubMed  Google Scholar 

  32. Dowling CM, Hollinshead KER, Di Grande A, Pritchard J, Zhang H, Dillon ET, Haley K, Papadopoulos E, Mehta AK, Bleach R, et al. Multiple screening approaches reveal HDAC6 as a novel regulator of glycolytic metabolism in triple-negative breast cancer. Sci Adv. 2021;7:eabc4897. https://doi.org/10.1126/sciadv.abc4897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Min A, Im SA, Kim DK, Song SH, Kim HJ, Lee KH, Kim TY, Han SW, Oh DY, Kim TY, et al. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Res. 2015;17:33. https://doi.org/10.1186/s13058-015-0534-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sultana A, Singh M, Kumar A, Kumar R, Saha P, Kumar RS, Kumar D. To identify drug-drug interaction in cardiac patients in tertiary care hospitals. J Res Appl Sci and Biotechnol. 2022;1(3):146–52.

    Google Scholar 

  35. Bali P, Pranpat M, Swaby R, Fiskus W, Yamaguchi H, Balasis M, Rocha K, Wang HG, Richon V, Bhalla K. Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of her-2. Clin Cancer Res. 2005;11:6382–9. https://doi.org/10.1158/1078-0432.CCR-05-0344.

    Article  CAS  PubMed  Google Scholar 

  36. Gammoh N, Lam D, Puente C, Ganley I, Marks PA, Jiang X. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc Natl Acad Sci USA. 2012;109:6561–5. https://doi.org/10.1073/pnas.1204429109.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bellucci L, Dalvai M, Kocanova S, Moutahir F, Bystricky K. Activation of p21 by HDAC inhibitors requires acetylation of H2AZ. PLoS ONE. 2013;8:e54102. https://doi.org/10.1371/journal.pone.0054102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang F, Zhang T, Wu H, Yang Y, Liu N, Chen A, Li Q, Li J, Qin L, Jiang B, et al. Design and optimization of novel hydroxamate-based histone deacetylase inhibitors of bis-substituted aromatic amides bearing potent activities against tumor growth and metastasis. J Med Chem. 2014;57:9357–69. https://doi.org/10.1021/jm5012148.

    Article  CAS  PubMed  Google Scholar 

  39. Yang F, Shan P, Zhao N, Ge D, Zhu K, Jiang CS, Li P, Zhang H. Developmenta of hydroxamate-based histone descetylase inhibitors containing 1,2,4-oxadiazole moiety core with antitumor activities. Bioorg Med Chem Lett. 2019;29:15–21. https://doi.org/10.1016/j.bmcl.2018.11.027.3.

    Article  CAS  PubMed  Google Scholar 

  40. Shan P, Yang F, Qi H, Hu Y, Zhu S, Sun Z, Zhang Z, Wang C, Hou C, Yu J, et al. Alteration of MDM2 by the small molecule YF438 exerts antitumor effects in triple-negative breast cancer. Cancer Res. 2021;81:4027–40. https://doi.org/10.1158/0008-5472.CAN-20-0922.

    Article  CAS  PubMed  Google Scholar 

  41. Yang F, Han L, Zhao N, Yang Y, Ge D, Zhang H, Chen Y. Synthesis and biological evaluation of thiophene-based hydroxamate derivatives as HDACis with antitumor activities. Future Med Chem. 2020;12:655–72. https://doi.org/10.4155/fmc-2019-0343.

    Article  CAS  PubMed  Google Scholar 

  42. Amle VS, Rathod DA, Keshamma E, Kumar V, Kumar R, Saha P. Bioactive herbal medicine use for eye sight: a meta analysis. J for Res Appl Sci and Biotechnol. 2022;1(3):42–50.

    Google Scholar 

  43. Yao D, Li C, Jiang J, Huang J, Wang J, He Z, Zhang J. Design, synthesis and biological evaluation of novel HDAC inhibitors with improved pharmacokinetic profile in breast cancer. Eur J Med Chem. 2020;205:112648. https://doi.org/10.1016/j.ejmech.2020.112648.

    Article  CAS  PubMed  Google Scholar 

  44. Sandhu P, Andrews P, Baker M, Koeplinger K, Soli E, Miller T, Baillie T. Disposition of vorinostat, a novel histone deacetylase inhibitor and anticancer agent, in preclinical species. Drug Metab Lett. 2007;1:153–61. https://doi.org/10.2174/187231207780363642.

    Article  CAS  PubMed  Google Scholar 

  45. Lee HY, Nepali K, Huang FI, Chang CY, Lai MJ, Li YH, Huang HL, Yang CR, Liou JP. (N-Hydroxycarbonylbenylamino)quinolines as selective histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo. J Med Chem. 2018;61:905–17. https://doi.org/10.1021/acs.jmedchem.7b01404.

    Article  CAS  PubMed  Google Scholar 

  46. Bresciani A, Ontoria JM, Biancofiore I, Cellucci A, Ciammaichella A, Di Marco A, Ferrigno F, Francone A, Malancona S, Monteagudo E, et al. Improved selective class I HDAC and novel selective HDAC3 inhibitors: beyond hydroxamic acids and benzamides. ACS Med Chem Lett. 2018;10:481–6. https://doi.org/10.1021/acsmedchemlett.8b00517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010;29:969–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol. 2010;189:671–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee JH, Mahendran A, Yao Y, Ngo L, Venta-Perez G, Choy ML, Kim N, Ham WS, Breslow R, Marks PA. Development of a histone deacetylase 6 inhibitor and its biological effects. Proc Natl Acad Sci. 2013;110:15704–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee HY, Tsai AC, Chen MC, Shen PJ, Cheng YC, Kuo CC, Pan SL, Liu YM, Liu JF, Yeh TK, et al. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J Med Chem. 2014;57:4009–22.

    CAS  PubMed  Google Scholar 

  51. Lee SH, Yoo C, Im S, Jung JH, Choi HJ, Yoo J. Expression of histone deacetylases in diffuse large B-cell lymphoma and its clinical significance. Int J Med Sci. 2014;11:994–1000.

    PubMed  PubMed Central  Google Scholar 

  52. Li Z, Zhu WG. Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int J Biol Sci. 2014;10:757–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar R, Saha P, Keshamma E, Sachitanadam P, Subramanian M. Docking studies of some novel hetrocyclic compound as Acat inhibitors: a meta analysis. J for Res Applied Sci Biotechnol. 2022;1(3):33–41.

    Google Scholar 

  54. Li Y, Kao GD, Garcia BA, Shabanowitz J, Hunt DF, Qin J, Phelan C, Lazar MA. A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Genes Dev. 2006;20:2566–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li D, Sun X, Zhang L, Yan B, **e S, Liu R, Liu M, Zhou J. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells. Protein Cell. 2014;5:214–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li S, Liu X, Chen X, Zhang L, Wang X. Histone deacetylase 6 promotes growth of glioblastoma through inhibition of SMAD2 signaling. Tumour Biol. 2015;36:9661–5.

    CAS  PubMed  Google Scholar 

  57. Li Y, Peng L, Seto E. HDAC10 regulates cell cycle G2/M phase transition via a novel Let-7-HMGA2-Cyclin A2 pathway. Mol Cell Biol. 2015;35:3547–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liao W, Jordaan G, Srivastava MK, Dubinett S, Sharma S, Sharma S. Effect of epigenetic histone modifications on E-cadherin splicing and expression in lung cancer. Am J Cancer Res. 2013;3:374–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liffers K, Kolbe K, Westphal M, Lamszus K, Schulte A. Histone deacetylase inhibitors resensitize EGFR/EGFRvIII-overexpressing, Erlotinib-resistant glioblastoma cells to tyrosine kinase inhibition. Target Oncol. 2015;11:29–40.

    Google Scholar 

  60. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell. 2010;38:864–78.

    CAS  PubMed  Google Scholar 

  61. Lin YH, Yuan J, Pei H, Liu T, Ann DK, Lou Z. KAP1 Deacetylation by SIRT1 promotes non-homologous end-joining repair. PLoS ONE. 2015;10: e0123935.

    PubMed  PubMed Central  Google Scholar 

  62. Liu KP, Zhou D, Ouyang DY, Xu LH, Wang Y, Wang LX, Pan H, He XH. LC3B-II deacetylation by histone deacetylase 6 is involved in serum-starvation-induced autophagic degradation. Biochem Biophys Res Commun. 2013;441:970–5.

    CAS  PubMed  Google Scholar 

  63. Lobera M, Madauss KP, Pohlhaus DT, Wright QG, Trocha M, Schmidt DR, Baloglu E, Trump RP, Head MS, Hofmann GA, et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat Chem Biol. 2013;9:319–25.

    CAS  PubMed  Google Scholar 

  64. Locatelli SL, Cleris L, Stirparo GG, Tartari S, Saba E, Pierdominici M, Malorni W, Carbone A, Anichini A, Carlo-Stella C. BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi Givinostat and Sorafenib in Hodgkin lymphoma cell line xenografts. Leukemia. 2014;28:1861–71.

    CAS  PubMed  Google Scholar 

  65. Lopez G, Bill KL, Bid HK, Braggio D, Constantino D, Prudner B, Zewdu A, Batte K, Lev D, Pollock RE. HDAC8, A potential therapeutic target for the treatment of malignant peripheral nerve sheath tumors (MPNST). PLoS ONE. 2015;10: e0133302.

    PubMed  PubMed Central  Google Scholar 

  66. Luna A, Aladjem MI, Kohn KW. SIRT1/PARP1 crosstalk: Connecting DNA damage and metabolism. Genome Integr. 2013;4:6.

    PubMed  PubMed Central  Google Scholar 

  67. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W. Negative control of p53 by Sir2α promotes cell survival under stress. Cell. 2001;107:137–48.

    CAS  PubMed  Google Scholar 

  68. Lv Z, Weng X, Du C, Zhang C, **ao H, Cai X, Ye S, Cheng J, Ding C, **e H, et al. Downregulation of HDAC6 promotes angiogenesis in hepatocellular carcinoma cells and predicts poor prognosis in liver transplantation patients. Mol Carcinog. 2015;55:1024–33.

    PubMed  Google Scholar 

  69. Mai A, Massa S, Pezzi R, Simeoni S, Rotili D, Nebbioso A, Scognamiglio A, Altucci L, Loidl P, Brosch G. Class II (IIa)-selective histone deacetylase inhibitors. 1: synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J Med Chem. 2005;48:3344–53.

    CAS  PubMed  Google Scholar 

  70. Malvaez M, McQuown SC, Rogge GA, Astarabadi M, Jacques V, Carreiro S, Rusche JR, Wood MA. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci. 2013;110:2647–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12:1247–52.

    CAS  PubMed  Google Scholar 

  72. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332:1443–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Marek L, Hamacher A, Hansen FK, Kuna K, Gohlke H, Kassack MU, Kurz T. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J Med Chem. 2013;56:427–36.

    CAS  PubMed  Google Scholar 

  74. Marquard L, Poulsen CB, Gjerdrum LM, de Nully BP, Christensen IJ, Jensen PB, Sehested M, Johansen P, Ralfkiaer E. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology. 2009;54:688–98.

    PubMed  Google Scholar 

  75. Matsuba S, Niwa S, Muraki K, Kanatsuka S, Nakazono Y, Hatano N, Fujii M, Zhan P, Suzuki T, Ohya S. Downregulation of Ca2+-activated Cl- channel TMEM16A by the inhibition of histone deacetylase in TMEM16A-expressing cancer cells. J Pharmacol Exp Ther. 2014;351:510–8.

    PubMed  Google Scholar 

  76. Marquard L, Gjerdrum LM, Christensen IJ, Jensen PB, Sehested M, Ralfkiaer E. Prognostic significance of the therapeutic targets histone deacetylase 1, 2, 6 and acetylated histone H4 in cutaneous T-cell lymphoma. Histopathology. 2008;53:267–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. McDermott J, Jimeno A. Belinostat for the treatment of peripheral T-cell lymphomas. Drugs Today (Barc). 2014;50:337–45.

    CAS  PubMed  Google Scholar 

  78. McGraw AL. Romidepsin for the treatment of T-cell lymphomas. Am J Health Syst Pharm. 2013;70:1115–22.

    CAS  PubMed  Google Scholar 

  79. Meidhof S, Brabletz S, Lehmann W, Preca BT, Mock K, Ruh M, Schuler J, Berthold M, Weber A, Burk U, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Methot JL, Chakravarty PK, Chenard M, Close J, Cruz JC, Dahlberg WK, Fleming J, Hamblett CL, Hamill JE, Harrington P, et al. Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorg Med Chem Lett. 2008;18:973–8.

    CAS  PubMed  Google Scholar 

  81. Milde T, Oehme I, Korshunov A, Kopp-Schneider A, Remke M, Northcott P, Deubzer HE, Lodrini M, Taylor MD, von Deimling A, et al. HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res. 2010;16:3240–52.

    CAS  PubMed  Google Scholar 

  82. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, Jackson SP. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol. 2010;17:1144–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Min SK, Koh YH, Park Y, Kim HJ, Seo J, Park HR, Cho SJ, Kim IS. Expression of HAT1 and HDAC1, 2, 3 in diffuse large B-cell lymphomas, peripheral T-cell lymphomas, and NK/T-cell lymphomas. Korean J Pathol. 2012;46:42–150.

    Google Scholar 

  84. Minami J, Suzuki R, Mazitschek R, Gorgun G, Ghosh B, Cirstea D, Hu Y, Mimura N, Ohguchi H, Cottini F, et al. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia. 2014;28:680–9.

    CAS  PubMed  Google Scholar 

  85. Cheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Sig Transduct Target Ther. 2019;4:62. https://doi.org/10.1038/s41392-019-0095-0.

    Article  Google Scholar 

  86. Minamiya Y, Ono T, Saito H, Takahashi N, Ito M, Motoyama S, Ogawa J. Strong expression of HDAC3 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Tumour Biol. 2010;31:533–9.

    CAS  PubMed  Google Scholar 

  87. Minamiya Y, Ono T, Saito H, Takahashi N, Ito M, Mitsui M, Motoyama S, Ogawa J. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer. 2011;74:300–4.

    PubMed  Google Scholar 

  88. Mishima Y, Santo L, Eda H, Cirstea D, Nemani N, Yee AJ, O’Donnell E, Selig MK, Quayle SN, Arastu-Kapur S, et al. Ricolinostat (ACY-1215) induced inhibition of aggresome formation accelerates carfilzomib-induced multiple myeloma cell death. Br J Haematol. 2015;169:423–34.

    CAS  PubMed  Google Scholar 

  89. Nyarko RO, Awuchi CG, Kumar R, Boateng E, Kahwa I, Boateng PO, Saha P. Evaluation of cafeteria diet in experimental animal with plant extract of calotropis procera for obesity parameter. J Res Appl Sci and Biotechnol. 2022;1(3):107–13.

    Google Scholar 

  90. Mithraprabhu S, Kalff A, Chow A, Khong T, Spencer A. Dysregulated class I histone deacetylases are indicators of poor prognosis in multiple myeloma. Epigenetics. 2014;9:1511–20.

    PubMed  PubMed Central  Google Scholar 

  91. Subramanian M, Keshamma E, Janjua D, Kumar D, Kumar R, Saha P, Rao S. Quality risk management approach for drug development and its future prospectives. J for Res Appl Sci Biotechnol. 2022;1(3):166–77.

    Google Scholar 

  92. Wapenaar H, Dekker FJ. Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenet. 2016;8:59.

    Google Scholar 

  93. Moffat D, Patel S, Day F, Belfield A, Donald A, Rowlands M, Wibawa J, Brotherton D, Stimson L, Clark V, et al. Discovery of 2-(6-{[(6-fluoroquinolin-2-yl)methyl]amino}bicyclo[3.1.0]hex-3-yl)-N-hydroxypyrimidine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor. J Med Chem. ;53:8663–8678.

  94. Moreno DA, Scrideli CA, Cortez MA, de Paula QR, Valera ET, da Silva SV, Yunes JA, Brandalise SR, Tone LG. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol. 2010;150:665–73.

    CAS  PubMed  Google Scholar 

  95. Moresi V, Carrer M, Grueter CE, Rifki OF, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN. Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proc Natl Acad Sci. 2012;109:1649–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Morschhauser F, Terriou L, Coiffier B, Bachy E, Varga A, Kloos I, Lelievre H, Sarry AL, Depil S, Ribrag V. Phase 1 study of the oral histone deacetylase inhibitor abexinostat in patients with Hodgkin lymphoma, non-Hodgkin lymphoma, or chronic lymphocytic leukaemia. Invest New Drugs. 2015;33:423–31.

    CAS  PubMed  Google Scholar 

  97. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124:315–29.

    CAS  PubMed  Google Scholar 

  98. Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, Winzer KJ, Dietel M, Weichert W, Denkert C. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer–overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 2013;13:215.

    PubMed  PubMed Central  Google Scholar 

  99. Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, Melisko M, Ismail-Khan R, Rugo H, Moasser M, et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer. 2011;104:1828–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 2016;6(10):a026831. https://doi.org/10.1101/cshperspect.a026831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kawai H, Li H, Avraham S, Jiang S, Avraham HK. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha. Int J Cancer. 2003;107:353–8.

    CAS  PubMed  Google Scholar 

  102. Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, Hamaguchi M, Hara Y, Kobayashi S, Iwase H. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat. 2005;94:11–6.

    CAS  PubMed  Google Scholar 

  103. Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D. Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001;11:162–6.

    CAS  PubMed  Google Scholar 

  104. Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL, Eckert KA, Verderame MF, Welch DR. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the MSIN3 histone deacetylase complex and represses transcription. J Biol Chem. 2004;279:1562–9.

    CAS  PubMed  Google Scholar 

  105. Garmpi A, Garmpis N, Damaskos C, Valsami S, Spartalis E, Lavaris A, Patelis N, Margonis GA, Apostolou KG, Spartalis M, et al. Histone deacetylase inhibitors as a new anticancer option: How far can we go with expectations? J BUON. 2018;23:846–61.

    PubMed  Google Scholar 

  106. Damaskos C, Karatzas T, Nikolidakis L, Kostakis ID, Karamaroudis S, Boutsikos G, Damaskou Z, Kostakis A, Kouraklis G. Histone deacetylase (HDAC) inhibitors: current evidence for therapeutic activities in pancreatic cancer. Anticancer Res. 2015;35:3129–35.

    CAS  PubMed  Google Scholar 

  107. Marks PA. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Investig Drugs. 2010;19:1049–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA. 2001;98:10833–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000;97:10014–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5:981–9.

    CAS  PubMed  Google Scholar 

  111. Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P, Pili R. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1. Cancer Res. 2006;66:8814–21.

    CAS  PubMed  Google Scholar 

  112. Kano Y, Akutsu M, Tsunoda S, Izumi T, Kobayashi H, Mano H, Furukawa Y. Cytotoxic effects of histone deacetylase inhibitor FK228 (depsipeptide, formally named FR901228) in combination with conventional anti-leukemia/lymphoma agents against human leukemia/lymphoma cell lines. Investig New Drugs. 2006;25:31–40.

    Google Scholar 

  113. Wardell SE, Ilkayeva OR, Wieman HL, Frigo DE, Rathmell JC, Newgard CB, McDonnell DP. Glucose metabolism as a target of histone deacetylase inhibitors. Mol Endocrinol. 2009;23:388–401.

    CAS  PubMed  Google Scholar 

  114. Barbarotta L, Hurley K. Romidepsin for the treatment of peripheral T-cell lymphoma. J Adv Pract Oncol. 2015;6:22–36.

    PubMed  PubMed Central  Google Scholar 

  115. Libby EN, Becker PS, Burwick N, Green DJ, Holmberg L, Bensinger WI. Panobinostat: a review of trial results and future prospects in multiple myeloma. Expert Rev Hematol. 2014;8:9–18.

    PubMed  Google Scholar 

  116. Damaskos C, Garmpis N, Valsami S, Kontos M, Spartalis E, Kalampokas T, Kalampokas E, Athanasiou A, Moris D, Daskalopoulou A, et al. Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res. 2017;37:35–46.

    CAS  PubMed  Google Scholar 

  117. Woo YM. Epigenetic regulation in cystogenesis. Adv Exp Med Biology. 2016;933:59–68.

    CAS  Google Scholar 

  118. Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP, Verbois L, Morse DE, Jee JM, Pope S, Harapanhalli RS, Dagher R, Farrell A, Justice R, Pazdur R. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res. 2007;13:2318–22.

    CAS  PubMed  Google Scholar 

  119. Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene. 2007;26:1351–6.

    CAS  PubMed  Google Scholar 

  120. Damaskos C, Valsami S, Spartalis E, Antoniou EA, Tomos P, Karamaroudis S, Zoumpou T, Pergialiotis V, Stergios K, Michaelides C, Kontzoglou K, Perrea D, Nikiteas N, Dimitroulis D. Histone deacetylase inhibitors: a novel therapeutic weapon against medullary thyroid cancer? Anticancer Res. 2016;36:5019–24.

    CAS  PubMed  Google Scholar 

  121. Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays. 1995;17:423–30.

    CAS  PubMed  Google Scholar 

  122. Blumenschein GR Jr, Kies MS, Papadimitrakopoulou VA, Lu C, Kumar AJ, Ricker JL, Chiao JH, Chen C, Frankel SR. Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest New Drugs. 2008;26:81–7.

    CAS  PubMed  Google Scholar 

  123. Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, Frankel P, Smith DD, Doroshow JH, Wong C, Aparicio A, Gandara DR, Somlo G. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res. 2008;14:7138–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401:188–93.

    CAS  PubMed  Google Scholar 

  125. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res. 2001;61:8492–7.

    CAS  PubMed  Google Scholar 

  126. Bali P, Pranpat M, Swaby R, Fiskus W, Yamaguchi H, Balasis M, Rocha K, Wang HG, Richon V, Bhalla K. Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of HER2. Clin Cancer Res. 2005;11:6382–9.

    CAS  PubMed  Google Scholar 

  127. Wu S, Luo Z, Yu PJ, **e H, He YW. Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial–mesenchymal transition of triple-negative breast cancer cells via HDAC8/FOXA1 signals. Biol Chem. 2016;397:75–83.

    CAS  PubMed  Google Scholar 

  128. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial– mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    CAS  PubMed  Google Scholar 

  129. Sami S, Hoti N, Xu HM, Shen Z, Huang X. Valproic acid inhibits the growth of cervical cancer both in vitro and in vivo. J Biochem. 2008;144:357–62.

    CAS  PubMed  Google Scholar 

  130. Kurwale N, Garg K, Arora A, Chandra PS, Tripathi M. Valproic acid as an antiepileptic drug: Is there a clinical relevance for the epilepsy surgeon? Epilepsy Res. 2016;127:191–4.

    CAS  PubMed  Google Scholar 

  131. Peselow ED, Clevenger S, IsHak WW. Prophylactic efficacy of lithium, valproic acid, and carbamazepine in the maintenance phase of bipolar disorder: a naturalistic study. Int Clin Psychopharmacol. 2016;31:218–23.

    PubMed  Google Scholar 

  132. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001;20:6969–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hrzenjak A, Moinfar F, Kremser ML, Strohmeier B, Staber PB, Zatloukal K, Denk H. Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol Cancer Ther. 2006;5:2203–10.

    CAS  PubMed  Google Scholar 

  134. Fortunati N, Bertino S, Costantino L, Bosco O, Vercellinatto I, Catalano MG, Boccuzzi G. Valproic acid is a selective antiproliferative agent in estrogen-sensitive breast cancer cells. Cancer Lett. 2008;259:156–64.

    CAS  PubMed  Google Scholar 

  135. Travaglini L, Vian L, Billi M, Grignani F, Nervi C. Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int J Biochem Cell Biol. 2009;41:225–34.

    CAS  PubMed  Google Scholar 

  136. Zhang L, Wang G, Wang L, Song C, Leng Y, Wang X, Kang J. VPA inhibits breast cancer cell migration by specifically targeting HDAC2 and down-regulating Survivin. Mol Cell Biochem. 2012;361:39–45.

    CAS  PubMed  Google Scholar 

  137. Mawatari T, Ninomiya I, Inokuchi M, Harada S, Hayashi H, Oyama K, Makino I, Nakagawara H, Miyashita T, Tajima H, Takamura H, Fushida S, Ohta T. Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through HSP70 acetylation. Int J Oncol. 2015;47:2073–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ganai SA. Panobinostat: The small molecule metalloenzyme inhibitor with marvelous anticancer activity. Curr Top Med Chem. 2016;16:427–34.

    CAS  PubMed  Google Scholar 

  139. Zhou Q, Atadja P, Davidson NE. Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biol Ther. 2007;6:64–9.

    CAS  PubMed  Google Scholar 

  140. Prestegui-Martel B, Bermudez-Lugo JA, Chavez-Blanco A, Duenas-Gonzalez A, Garcia-Sanchez JR, Perez-Gonzalez OA, Padilla-Martinez II, Fragoso-Vazquez MJ, Mendieta-Wejebe JE, Correa-Basurto AM, Mendez-Luna D, Trujillo-Ferrara J, Correa-Basurto J. N-(2-Hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. J Enzyme Inhib Med Chem. 2016;2:1–10.

    Google Scholar 

  141. Arun K, Chiara V, Donatella B, Marco LL, Deepak K. Phenothiazines as anti-cancer agents: SAR overview and synthetic strategies. Eur J Med Chem. 2023;254: 115337.

    Google Scholar 

  142. Kumar A, Yadav AK, Mishra V, Kumar D. Recent Advancements in Triazole-based Click Chemistry in Cancer Drug Discovery and Development. SynOpen. 2023;7:186–208.

    CAS  Google Scholar 

  143. The National Institute of Health. Clinical Trials database; 2019. https://clinicaltrials.gov/ct2/home

  144. Wong KK, Fracasso PM, Bukowski RM, Lynch TJ, Munster PN, Shapiro GI, Jänne PA, Eder JP, Naughton MJ, Ellis MJ, Jones SF. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin Cancer Res. 2009;15(7):2552–8.

    CAS  PubMed  Google Scholar 

  145. King SE, Skinner MK. Epigenetic transgenerational inheritance of obesity susceptibility. Trends Endocrinol Metab. 2020;31(7):478–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang JY, Minami Y, Zhu J. Abl and Cell Death. Abl Family Kinases in Development and Disease. 2006;26–47.

  147. Jasek K, Kasubova I, Holubekova V, Stanclova A, Plank L, Lasabova Z. Epigenetics: an alternative pathway in GISTs tumorigenesis. Neoplasma. 2018;65(4):477–93.

    CAS  PubMed  Google Scholar 

  148. Luo G, Hu Y, Zhang Z, Wang P, Luo Z, Lin J, Cheng C, Yang Y. Clinicopathologic significance and prognostic value of Ki-67 expression in patients with gastric cancer: a meta-analysis. Oncotarget. 2017;8(30):50273.

    PubMed  PubMed Central  Google Scholar 

  149. Weiss AJ, Iqbal J, Zaidi N, Mechanick JI. The skeletal subsystem as an integrative physiology paradigm. Curr Osteoporos Rep. 2010;8:168–77.

    PubMed  Google Scholar 

  150. Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S. 2017 Protein Data Bank (PDB): the single global macromolecular structure archive. Protein crystallography: methods and protocols. 627–41.

  151. Micelli C, Rastelli G. Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discovery Today. 2015;20(6):718–35.

    CAS  PubMed  Google Scholar 

  152. Morris GM, Huey R, Olson AJ. Using autodock for ligand receptor docking. Curr Protoc Bioinformatics. 2008;24(1):8–14.

    Google Scholar 

  153. Pymol DeLano WL. An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002;40(1):82–92.

    Google Scholar 

  154. Jejurikar BL, Rohane SH. Drug designing in discovery studio.

  155. Raghuvanshi D, Kumar S, Shukla MK, Kumar D, Kumar D, Verma R, Nepovimova E, Valko M, Alomar SY, Alwasel SH, Kuca K. Assessment of phytochemicals, antioxidants and in-silico molecular dynamic simulation of plant derived potential inhibitory activity of Thalictrum. Biomed. Pharmacother. 2022;156:113898–917. https://doi.org/10.1016/j.biopha.2022.113898.

    Article  CAS  PubMed  Google Scholar 

  156. Kumar S, Sengupta S, Ali I, Gupta MK, Lalhlenmawia H, Azizov S, Kumar D. Identification and exploration of quinazoline-1,2,3-triazole inhibitors targeting EGFR in lung cancer. J Biomol Struct Dyn. 2023. https://doi.org/10.1080/07391102.2023.2204360.

    Article  PubMed  Google Scholar 

  157. Vimal SK, Cao H, Dubey A, Agrawal L, Pathak N, Zuo H, Kumar D, Bhattacharyya S. In vivo and in silico investigations of the pegylated gold nanoparticle treatment of amyotrophic lateral sclerosis in mice. New J Chem. 2022;46(25):12252–64.

    CAS  Google Scholar 

  158. Huey R, Morris GM, Forli S. Using AutoDock 4 and Vina with AutoDockTools: A Tutorial. Scripps Research Institute, California, USA. 2011 Dec 8.

  159. Pawar RP, Rohane SH. Role of autodock vina in PyRx molecular docking. Asian J. Research Chem. 2021;14(2):132–4.

  160. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK. 2006 Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. 84

  161. Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–34.

    CAS  PubMed  Google Scholar 

  162. Steinmann SN, Sautet P, Michel C. Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models. Phys Chem Chem Phys. 2016;18(46):31850–61.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to their respective institutes for the support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Ethical approval

Not applicable.

Informed consent

We agreed with the journal policy and provided our consent for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, S.A., Sahu, K.K., Sengupta, S. et al. Recent advancement of HDAC inhibitors against breast cancer. Med Oncol 40, 201 (2023). https://doi.org/10.1007/s12032-023-02058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02058-x

Keywords

Navigation