Log in

Fluoxetine Enhances Neurogenesis in Aged Rats with Cortical Infarcts, but This is not Reflected in a Behavioral Recovery

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Age is associated with poor outcome and impaired functional recovery after stroke. Fluoxetine, which is widely used in clinical practice, can regulate hippocampal neurogenesis in young rodents. As the rate of neurogenesis is dramatically reduced during aging, we studied the effect of post-stroke fluoxetine treatment on neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ) of dentate gyrus (DG) and whether this would be associated with any behavioral recovery after the cortical infarct in aged rats. Aged rats were randomly assigned to four groups: sham-operated rats, sham-operated rats treated with fluoxetine, rats subjected to cerebral ischemia, and rats with ischemia treated with fluoxetine. Focal cortical ischemia was induced by intracranial injection of vasoconstrictive peptide, endothelin-1 (ET-1). Fluoxetine was administered in the drinking water for 3 weeks starting 1 week after ischemia at a dose of 18 mg/kg/day. Behavioral recovery was evaluated on post-stroke days 29 to 31 after which the survival rate and fate of proliferating cells in the SVZ and DG were assessed by immunohistochemistry. Apoptosis was measured with the TUNEL assay. The results indicated that chronic fluoxetine treatment after stroke enhanced the proliferation of newborn neurons in the SVZ, but not in SGZ, and it suppressed perilesional apoptosis. Fluoxetine treatment did not affect the survival or differentiation of newly generated cells in the SVZ i.e., the enhanced neurogenesis was not translated into a behavioral outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayerbe L, Ayis S, Crichton S, Wolfe CD, Rudd AG (2014) The long-term outcomes of depression up to 10 years after stroke; the South London Stroke Register. J Neurol Neurosurg Psychiatry 85:514–521

    Article  PubMed  CAS  Google Scholar 

  • Badan I, Buchhold B, Hamm A, et al. (2003) Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery. J Cereb Blood Flow Metab 23:845–854

    Article  PubMed  CAS  Google Scholar 

  • Bondolfi L, Calhoun M, Ermini F, et al. (2002) Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J Neurosci 22:515–522

    PubMed  CAS  Google Scholar 

  • Bondolfi L, Ermini F, Long JM, Ingram DK, Jucker M (2004) Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging 25:333–340

    Article  PubMed  CAS  Google Scholar 

  • Bonita R, Solomon N, Broad JB (1997) Prevalence of stroke and stroke-related disability. Estimates from the Auckland Stroke sTudies Stroke 28:1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Brown AW, Marlowe KJ, Bjelke B (2003) Age effect on motor recovery in a post-acute animal stroke model. Neurobiol Aging 24:607–614

    Article  PubMed  Google Scholar 

  • Cameron HA, McKay RD (1999) Restoring production of hippocampal neurons in old age. Nat Neurosci 2:894–897

    Article  PubMed  CAS  Google Scholar 

  • Chollet F, Tardy J, Albucher JF, et al. (2011) Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 10:123–130

    Article  PubMed  CAS  Google Scholar 

  • Couillard-Despres S, Wuertinger C, Kandasamy M, et al. (2009) Ageing abolishes the effects of fluoxetine on neurogenesis. Mol Psychiatry 14:856–864

    Article  PubMed  CAS  Google Scholar 

  • Cowen DS, Takase LF, Fornal CA, Jacobs BL (2008) Age-dependent decline in hippocampal neurogenesis is not altered by chronic treatment with fluoxetine. Brain Res 1228:14–19

    Article  PubMed  CAS  Google Scholar 

  • Dam M, Tonin P, De Boni A, et al. (1996) Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy. Stroke 27:1211–1214

    Article  PubMed  CAS  Google Scholar 

  • Darsalia V, Heldmann U, Lindvall O, Kokaia Z (2005) Stroke-induced neurogenesis in aged brain. Stroke 36:1790–1795

    Article  PubMed  Google Scholar 

  • Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623

    Article  PubMed  CAS  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103:8233–8238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Flaster M, Sharma A, Rao M (2013) Poststroke depression: a review emphasizing the role of prophylactic treatment and synergy with treatment for motor recovery. Top Stroke Rehabil 20:139–150

    Article  PubMed  Google Scholar 

  • Gainotti G, Antonucci G, Marra C, Paolucci S (2001) Relation between depression after stroke, antidepressant therapy, and functional recovery. J Neurol Neurosurg Psychiatry 71:258–261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goldstein LB (1997) Influence of common drugs and related factors on stroke outcome. Curr Opin Neurol 10:52–57

    Article  PubMed  CAS  Google Scholar 

  • Heine VM, Maslam S, Joels M, Lucassen PJ (2004) Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol Aging 25:361–375

    Article  PubMed  CAS  Google Scholar 

  • Holick KA, Lee DC, Hen R, Dulawa SC (2008) Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 33:406–417

    Article  PubMed  CAS  Google Scholar 

  • Huang GJ, Bannerman D, Flint J (2008) Chronic fluoxetine treatment alters behavior, but not adult hippocampal neurogenesis, in BALB/cJ mice. Mol Psychiatry 13:119–121

    Article  PubMed  CAS  Google Scholar 

  • Jessberger S, Zhao C, Toni N, Clemenson GD Jr., Li Y, Gage FH (2007) Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J Neurosci 27, 9400–9407.

    Article  PubMed  CAS  Google Scholar 

  • ** K, Minami M, **e L, et al. (2004) Ischemia-induced neurogenesis is preserved but reduced in the aged rodent brain. Aging Cell 3:373–377

    Article  PubMed  CAS  Google Scholar 

  • ** K, Sun Y, **e L, et al. (2003) Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2:175–183

    Article  PubMed  CAS  Google Scholar 

  • Jolkkonen J, Puurunen K, Rantakomi S, Sirvio J, Haapalinna A, Sivenius J (2000) Effects-of fluoxetine on sensorimotor and spatial learning deficits following focal cerebral ischemia in rats. Restor Neurol Neurosci 17:211–216

    PubMed  CAS  Google Scholar 

  • Jorgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Stoier M. Olsen TS (1995) Outcome and time course of recovery in stroke. Part I: outcome. The Copenhagen Stroke Study. Arch Phys Med Rehabil 76, 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Kelly-Hayes M, Beiser A, Kase CS, Scaramucci A, D’Agostino RB, Wolf PA (2003) The influence of gender and age on disability following ischemic stroke: the Framingham study. J Stroke Cerebrovasc Dis 12:119–126

    Article  PubMed  Google Scholar 

  • Kodama M, Fujioka T, Duman RS (2004) Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 56:570–580

    Article  PubMed  CAS  Google Scholar 

  • Li WL, Cai HH, Wang B, et al. (2009) Chronic fluoxetine treatment improves ischemia-induced spatial cognitive deficits through increasing hippocampal neurogenesis after stroke. J Neurosci Res 87:112–122

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    PubMed  CAS  Google Scholar 

  • Maslov AY, Barone TA, Plunkett RJ, Pruitt SC (2004) Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci 24:1726–1733

    Article  PubMed  CAS  Google Scholar 

  • Mikami K, Jorge RE, Adams Jr HP, et al. (2011) Effect of antidepressants on the course of disability following stroke. Am J Geriatr Psychiatr 19:1007–1015

    Article  Google Scholar 

  • Nannetti L, Paci M, Pasquini J, Lombardi B, Taiti PG (2005) Motor and functional recovery in patients with post-stroke depression. Disabil Rehabil 27:170–175

    Article  PubMed  Google Scholar 

  • Niv F, Keiner S, Krishna WOW, Lie DC, Redecker C (2012) Aberrant neurogenesis after stroke: a retroviral cell labeling study. Stroke 43:2468–2475

    Article  PubMed  Google Scholar 

  • Ohira K, Miyakawa T (2011) Chronic treatment with fluoxetine for more than 6 weeks decreases neurogenesis in the subventricular zone of adult mice. Mol Brain 4:10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pariente J, Loubinoux I, Carel C, et al. (2001) Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol 50:718–729

    Article  PubMed  CAS  Google Scholar 

  • Peters R (2006) Ageing and the brain. Postgrad Med J 82:84–88

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pitkanen A (2003) Clinical trials in neuroprotection. 23–25 January 2003, Key biscayne, FL, USA. IDrugs 6:200–202

    PubMed  Google Scholar 

  • Popa-Wagner A, Buga AM, Kokaia Z (2011) Perturbed cellular response to brain injury during aging. Ageing Res Rev 10:71–79

    Article  PubMed  Google Scholar 

  • Popa-Wagner A, Buga AM, Turner RC, Rosen CL, Toescu E (2012) Cerebrovascular disorders: role of aging. J Aging Res 2012:128146

    Article  PubMed Central  PubMed  Google Scholar 

  • Popa-Wagner A, Carmichael ST, Kokaia Z, Kessler C, Walker LC (2007) The response of the aged brain to stroke: too much, too soon? Curr Neurovasc Res 4:216–227

    Article  PubMed  CAS  Google Scholar 

  • Popp A, Jaenisch N, Witte OW, Frahm C (2009) Identification of ischemic regions in a rat model of stroke. PLoS One 4:e4764

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Possamai F, dos Santos J, Walber T, Marcon JC, dos Santos TS, Lino de Oliveira C (2015) Influence of enrichment on behavioral and neurogenic effects of antidepressants in Wistar rats submitted to repeated forced swim test. Prog Neuro-Psychopharmacol Biol Psychiatry 58:15–21

    Article  CAS  Google Scholar 

  • Qu HL, Zhao M, Zhao SS, et al. (2015) Forced limb-use enhanced neurogenesis and behavioral recovery after stroke in the aged rats. Neuroscience 286:316–324

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG (1998) Treatment issues in poststroke depression. Depress Anxiety 8(Suppl 1):85–90

    Article  PubMed  Google Scholar 

  • Rosen CL, Dinapoli VA, Nagamine T, Crocco T (2005) Influence of age on stroke outcome following transient focal ischemia. J Neurosurg 103:687–694

    Article  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, et al. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  • Schallert T, Kozlowski DA, Humm JL, Cocke RR (1997) Use-dependent structural events in recovery of function. Adv Neurol 73:229–238

    PubMed  CAS  Google Scholar 

  • Schallert T, Lindner MD (1990) Rescuing neurons from trans-synaptic degeneration after brain damage: helpful, harmful, or neutral in recovery of function? Can J Psychol 44:276–292

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Liu T, Zhao M, et al. (2015) Fluoxetine enhanced neurogenesis is not translated to functional outcome in stroke rats. Neurosci Lett 603:31–36

    Article  PubMed  CAS  Google Scholar 

  • Surget A, Saxe M, Leman S, et al. (2008) Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 64:293–301

    Article  PubMed  CAS  Google Scholar 

  • Thored P, Arvidsson A, Cacci E, et al. (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24:739–747

    Article  PubMed  CAS  Google Scholar 

  • Wang J-W, David DJ, Monckton JE, Battaglia F, Hen R (2008) Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 28:1374–1384

    Article  PubMed  CAS  Google Scholar 

  • Wilson MS, Hamm RJ (2002) Effects of fluoxetine on the 5-HT1A receptor and recovery of cognitive function after traumatic brain injury in rats. Am J Phys Med Rehabil 81:364–372

    Article  PubMed  Google Scholar 

  • Windle V, Corbett D (2005) Fluoxetine and recovery of motor function after focal ischemia in rats. Brain Res 1044:25–32

    Article  PubMed  CAS  Google Scholar 

  • Zhao CS, Puurunen K, Schallert T, Sivenius J, Jolkkonen J (2005) Effect of cholinergic medication, before and after focal photothrombotic ischemic cortical injury, on histological and functional outcome in aged and young adult rats. Behav Brain Res 156:85–94

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Zhao M, **ao T, Jolkkonen J, Zhao C (2013) Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats. Stroke 44:1698–1705

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81372104, No. 30872736), Program for Liaoning Excellent Talents in University (No. LR2013039) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20112104110003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuansheng Zhao.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Ethical Approval

The experiments were performed in conformity with the Use Committee of China Medical University [No.: SCXK (Liao) 2008–0005] and were approved by the Institutional Animal Care.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhou, Z., Liu, T. et al. Fluoxetine Enhances Neurogenesis in Aged Rats with Cortical Infarcts, but This is not Reflected in a Behavioral Recovery. J Mol Neurosci 58, 233–242 (2016). https://doi.org/10.1007/s12031-015-0662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0662-y

Keywords

Navigation