Log in

Excess branched-chain amino acids alter myotube metabolism and substrate preference which is worsened by concurrent insulin resistance

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Branched-chain amino acids (BCAA) have been shown to enhance several cellular signaling pathways including protein synthesis and mitochondrial biogenesis, yet population data demonstrate a correlation between circulating BCAA and severity of insulin resistance which has been hypothesized to be, in part, a byproduct of BCAA inhibition of mitochondrial function. The purpose of this study is to examine the effect of a BCAA mixture on muscle metabolism and related gene expression in vitro.

Methods

C2C12 myotubes were treated with a BCAA mixture containing leucine:isoleucine:valine at a ratio of 2:1:1 at 0.2, 2, or 20 mM (based on leucine content) for 6 days. qRT-PCR was used to measure metabolic gene expression. Oxygen consumption and extracellular acidification were used to assess mitochondrial and glycolytic metabolism, respectively. Mitochondrial content was determined via mitochondrial-specific staining.

Results

Despite significantly elevated mitochondrial staining, 6-day BCAA treatment reduced basal mitochondrial metabolism at a supraphysiological concentration (20 mM) in both insulin sensitive and resistant cells. Peak mitochondrial capacity was also reduced in insulin-resistant (but not insulin sensitive) cells. Conversely, basal glycolytic metabolism was elevated following 20 mM BCAA treatment, regardless of insulin resistance. In addition, insulin-resistant cells treated with 20 mM BCAA exhibited reduced gene expression of Ppargc1a, Cytc, Atp5b, Glut4, and several glycolytic enzymes versus insulin sensitive cells treated with 20 mM BCAA.

Conclusions

Collectively, these findings suggest BCAA at supraphysiologically high levels may negatively alter mitochondrial metabolism, and concurrent insulin resistance may also diminish peak mitochondrial capacity, as well as impede molecular adaptations that support a transition to a glycolytic preference/compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

BCAA:

branched-chain amino acid

BCKDH:

branched-chain alpha-keto acid dehydrogenase

CS:

citrate synthase

ECAR:

extracellular acidification rate

FCCP:

carbonyl cyanide p-[trifluoromethoxy]-phenyl-hydrazone

GLUT4:

glucose transporter 4

IRS-1:

insulin receptor substrate 1

LDHa:

lactate dehydrogenase A

LDHb:

lactate dehydrogenase B

mTOR:

mammalian target of rapamycin (mTOR)

NRF1/2:

nuclear respiratory factor 1/2

OCR:

oxygen consumption rate

PGC-1α:

peroxisome proliferator-activated receptor gamma coactivator 1 alpha

PPARα:

peroxisome proliferator-activated receptor alpha

PPARβ/δ:

peroxisome proliferator-activated receptor beta/delta

PK:

pyruvate kinase

TBP:

TATA binding protein

TFAM:

mitochondrial transcription factor A

References

  1. Z. Arany, M. Neinast, Branched chain amino acids in metabolic disease. Curr. Diab. Rep. 18, 76 (2018)

    Article  PubMed  Google Scholar 

  2. N.P. Gannon, J.K. Schnuck, R.A. Vaughan, BCAA metabolism and insulin sensitivity—dysregulated by metabolic status? Mol. Nutr. Food Res. 62, e1700756 (2018)

    Article  PubMed  Google Scholar 

  3. M. Holeček, Why are branched-chain amino acids increased in starvation and diabetes? Nutrients 12, 3087 (2020)

    Article  PubMed Central  Google Scholar 

  4. C.J. Lynch, S.H. Adams, Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10, 723–736 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C.B. Newgard, Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. H.S. Brunetta, C.Q. de Camargo, E.A. Nunes, Does L-leucine supplementation cause any effect on glucose homeostasis in rodent models of glucose intolerance? A systematic review. Amino Acids 50, 1663–1678 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. N.P. Gannon, R.A. Vaughan, Leucine-induced anabolic-catabolism: two sides of the same coin. Amino Acids 48, 321–336 (2015)

    Article  Google Scholar 

  8. L. Zhang, F. Li, Q. Guo, Y. Duan, W. Wang, Y. Zhong, Y. Yang, Y. Yin, Leucine supplementation: a novel strategy for modulating lipid metabolism and energy homeostasis. Nutrients 12, 1299 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  9. C. Ruocco, A. Segala, A. Valerio, E. Nisoli, Essential amino acid formulations to prevent mitochondrial dysfunction and oxidative stress. Curr. Opin. Clin. Nutr. Metab. Care 24, 88–95 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. C. Liang, B.J. Curry, P.L. Brown, M.B. Zemel, Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. J. Nutr. Metab. 2014, 239750 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  11. J.K. Schnuck, K.L. Sunderland, N.P. Gannon, M.R. Kuennen, R.A. Vaughan, Leucine stimulates PPARbeta/delta-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes. Biochimie 128-129, 1–7 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. X. Sun, M.B. Zemel, Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr. Metab. 6, 26 (2009)

    Article  Google Scholar 

  13. Y. Sato, K.A. Obeng, F. Yoshizawa, Acute oral administration of L-leucine upregulates slow-fiber- and mitochondria-related genes in skeletal muscle of rats. Nutr. Res. 57, 36–44 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. X. Chen, L. **ang, G. Jia, G. Liu, H. Zhao, Z. Huang, Effects of dietary leucine on antioxidant activity and expression of antioxidant and mitochondrial-related genes in longissimus dorsi muscle and liver of piglets. Anim. Sci. J. 90, 990–998 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. X. Chen, L. **ang, G. Jia, G. Liu, H. Zhao, Z. Huang, Leucine regulates slow-twitch muscle fibers expression and mitochondrial function by Sirt1/AMPK signaling in porcine skeletal muscle satellite cells. Anim. Sci. J. 90, 255–263 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Zhong, L. Zeng, J. Deng, Y. Duan, F. Li, β-hydroxy-β-methylbutyrate (HMB) improves mitochondrial function in myocytes through pathways involving PPARβ/δ and CDK4. Nutrition 60, 217–226 (2018)

    Article  PubMed  Google Scholar 

  17. G. D’Antona, M. Ragni, A. Cardile, L. Tedesco, M. Dossena, F. Bruttini, F. Caliaro, G. Corsetti, R. Bottinelli, M.O. Carruba, A. Valerio, E. Nisoli, Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 12, 362–372 (2010)

    Article  PubMed  Google Scholar 

  18. M.A. Johnson, N.P. Gannon, J.K. Schnuck, E.S. Lyon, K.L. Sunderland, R.A. Vaughan, Leucine, Palmitate, or leucine/palmitate cotreatment enhances myotube lipid content and oxidative preference. Lipids 53, 1043–1057 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. M.E. Rivera, E.S. Lyon, M.A. Johnson, R.A. Vaughan, Leucine increases mitochondrial metabolism and lipid content without altering insulin signaling in myotubes. Biochimie 168, 124–133 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. H. Li, M. Xu, J. Lee, C. He, Z. **e, Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 303, E1234–1244 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Jiao, S.F. Han, W. Zhang, J.Y. Xu, X. Tong, X.B. Yin, L.X. Yuan, L.Q. Qin, Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food Nutr. Res. 60, 31304 (2016)

    Article  PubMed  Google Scholar 

  22. H. Wu, S. Dridi, Y. Huang, J.I. Baum, Leucine decreases intramyocellular lipid deposition in an mTORC1-independent manner in palmitate-treated C2C12 myotubes. Am. J. Physiol. Endocrinol. Metab. 318, E152–E163 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. R.A. Vaughan, R. Garcia-Smith, N.P. Gannon, M. Bisoffi, K.A. Trujillo, C.A. Conn, Leucine treatment enhances oxidative capacity through complete carbohydrate oxidation and increased mitochondrial density in skeletal muscle cells. Amino Acids 45, 901–911 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. J. Banerjee, A. Bruckbauer, M.B. Zemel, Activation of the AMPK/Sirt1 pathway by a leucine-metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans. Metabolism 65, 1679–1691 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. A. Bruckbauer, M.B. Zemel, T. Thorpe, M.R. Akula, A.C. Stuckey, D. Osborne, E.B. Martin, S. Kennel, J.S. Wall, Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Nutr. Metab. 9, (2012). https://doi.org/10.1186/1743-7075-9-77.

  26. L. **ang, Z. Huang, X. Chen, G. Jia, G. Liu, H. Zhao, Leucine regulates porcine muscle fiber type transformation via adiponectin signaling pathway. Anim. Biotechnol. 11, 1–9 (2021)

    Article  Google Scholar 

  27. S. Jager, C. Handschin, J. Pierre, B.M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1 alpha. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  28. N. Gleyzer, K. Vercauteren, R.C. Scarpulla, Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol. Cell. Biol. 25, 1354–1366 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R.C. Scarpulla, Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813, 1269–1278 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. H.H. Zong, J.M. Ren, L.H. Young, M. Pypaert, J. Mu, M.J. Birnbaum, G.I. Shulman, AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl Acad. Sci. USA 99, 15983–15987 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M.J. Evans, R.C. Scarpulla, NRF-1—a transactivator of nuclear-encoded respiratory genes in animal-cells. Genes Dev. 4, 1023–1034 (1990)

    Article  CAS  PubMed  Google Scholar 

  32. J.V. Virbasius, R.C. Scarpulla, Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors—a potential link between nuclear and mitochodnrial gene-expression in organelle biogenesis. Proc. Natl Acad. Sci. USA 91, 1309–1313 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R.C. Scarpulla, Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286, 81–89 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M.Y. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell 127, 1109–1122 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. R. Amat, A. Planavila, S.L. Chen, R. Iglesias, M. Giralt, F. Villarroya, SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma co-activator-1 alpha (PGC-1 alpha) gene in skeletal muscle through the PGC-1 alpha autoregulatory loop and interaction with MyoD. J. Biol. Chem. 284, 21872–21880 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Brenmoehl, A. Hoelflich, Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13, 755–761 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Li, Z. **ong, W. Yan, E. Gao, H. Cheng, G. Wu, Y. Liu, L. Zhang, C. Li, S. Wang, M. Fan, H. Zhao, F. Zhang, L. Tao, Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics 10, 5623–5640 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. L. Tedesco, F. Rossi, M. Ragni, C. Ruocco, D. Brunetti, M.O. Carruba, Y. Torrente, A. Valerio, E. Nisoli, A Special amino-acid formula tailored to boosting cell respiration prevents mitochondrial dysfunction and oxidative stress caused by doxorubicin in mouse cardiomyocytes. Nutrients 12, 282 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  40. L. Tedesco, G. Corsetti, C.,M. Ruocco, M. Ragni, F. Rossi, M.O. Carruba, A. Valerio, E. Nisoli, A specific amino acid formula prevents alcoholic liver disease in rodents. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G566–G582 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. N. Abedpoor, F. Taghian, K. Ghaedi, I. Niktab, Z. Safaeinejad, F. Rabiee, S. Tanhaei, M.H. Nasr-Esfahani, PPARγ/Pgc-1α-Fndc5 pathway up-regulation in gastrocnemius and heart muscle of exercised, branched chain amino acid diet fed mice. Nutr. Metab. 15, 59 (2018)

    Article  Google Scholar 

  42. T. Matsumoto, K. Nakamura, H. Matsumoto, R. Sakai, T. Kuwahara, Y. Kadota, Y. Kitaura, J. Sato, Y. Shimomura, Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men. Springerplus 3, 35 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  43. R. Elango, K. Chapman, M. Rafii, R.O. Ball, P.B. Pencharz, Determination of the tolerable upper intake level of leucine in acute dietary studies in young men. Am. J. Clin. Nutr. 96, 759–767 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. E.S. Lyon, M.E. Rivera, M.A. Johnson, K.L. Sunderland, R.A. Vaughan, Actions of chronic physiological 3-hydroxyisobuterate treatment on mitochondrial metabolism and insulin signaling in myotubes. Nutr. Res. 66, 22–31 (2019)

    Article  CAS  PubMed  Google Scholar 

  45. M.E. Rivera, E.S. Lyon, M.A. Johnson, K.L. Sunderland, R.A. Vaughan, Effect of valine on myotube insulin sensitivity and metabolism with and without insulin resistance. Mol. Cell. Biochem. 468, 169–183 (2020)

    Article  CAS  PubMed  Google Scholar 

  46. N. Kumar, C.S. Dey, Metformin enhances insulin signalling in insulin-dependent and-independent pathways in insulin resistant muscle cells. Br. J. Pharm. 137, 329–336 (2002)

    Article  CAS  Google Scholar 

  47. N. Kumar, C.S. Dey, Development of insulin resistance and reversal by thiazolidinediones in C2C12 skeletal muscle cells. Biochem. Pharmacol. 65, 249–257 (2003)

    Article  PubMed  Google Scholar 

  48. M. Rivera, C. Rivera, R. Vaughan, Branched-chain amino acids at supraphysiological but not physiological levels reduce myotube insulin sensitivity. Diabetes Metab. Res. Rev. e3490 (2021). https://doi.org/10.1002/dmrr.3490. Epub ahead of print

  49. H. Crossland, K. Smith, I. Idris, B.E. Phillips, P.J. Atherton, D.J. Wilkinson, Exploring mechanistic links between extracellular BCAA & muscle insulin resistance: an in vitro approach. Am. J. Physiol. Cell. Physiol. 319, C1151–C1157 (2020)

    Article  CAS  PubMed  Google Scholar 

  50. J.J. Petrocelli, M.J. Drummond, PGC-1α-targeted therapeutic approaches to enhance muscle recovery in aging. Int. J. Environ. Res. Public Health 17, 8650 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  51. Y.B. Chang, K.B. Hong, M.G. Kim, H.J. Suh, K. Jo, Effect of the protein hydrolysate of rice syrup meal on the endurance exercise performance of BALB/c mice. Food Funct. 12, 1338–1348 (2021)

    Article  CAS  PubMed  Google Scholar 

  52. C. Ruocco, M. Ragni, F. Rossi, P. Carullo, V. Ghini, F. Piscitelli, A. Cutignano, E. Manzo, R.M. Ioris, F. Bontems, L. Tedesco, C.M. Greco, A. Pino, I. Severi, D. Liu, R.P. Ceddia, L. Ponzoni, L. Tenori, L. Rizzetto, M. Scholz, K. Tuohy, F. Bifari, V. Di Marzo, C. Luchinat, M.O. Carruba, S. Cinti, I. Decimo, G. Condorelli, R. Coppari, S. Collins, A. Valerio, E. Nisoli, Manipulation of dietary amino acids prevents and reverses obesity in mice through multiple mechanisms that modulate energy homeostasis. Diabetes 69, 2324–2339 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. W.W. French, S. Dridi, S.A. Shouse, H. Wu, A. Hawley, S.O. Lee, X. Gu, J.I. Baum, A high-protein diet reduces weight gain, decreases food intake, decreases liver fat deposition, and improves markers of muscle metabolism in obese Zucker rats. Nutrients 9, 587 (2017)

    Article  PubMed Central  Google Scholar 

  54. K.M. Hill, C.G. Stathis, E. Grinfeld, A. Hayes, A.J. McAinch, Co-ingestion of carbohydrate and whey protein isolates enhance PGC-1α mRNA expression: a randomised, single blind, cross over study. J. Int. Soc. Sports Nutr. 10, 8 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. I. Buondonno, F. Sassi, G. Carignano, F. Dutto, C. Ferreri, F.G. Pili, M. Massaia, E. Nisoli, C. Ruocco, P. Porrino, C. Ravetta, C. Riganti, G.C. Isaia, P. D’Amelio, From mitochondria to healthy aging: The role of branched-chain amino acids treatment: MATeR a randomized study. Clin. Nutr. 39, 2080–2091 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. G. Corsetti, E. Pasini, G. D’Antona, E. Nisoli, V. Flati, D. Assanelli, F.S. Dioguardi, R. Bianchi, Morphometric changes induced by amino acid supplementation in skeletal and cardiac muscles of old mice. Am. J. Cardiol. 101, 26E–34E (2008)

    Article  CAS  PubMed  Google Scholar 

  57. D. Brunetti, E. Bottani, A. Segala, S. Marchet, F. Rossi, F. Orlando, M. Malavolta, M.O. Carruba, C. Lamperti, M. Provinciali, E. Nisoli, A. Valerio, Targeting multiple mitochondrial processes by a metabolic modulator prevents sarcopenia and cognitive decline in SAMP8 mice. Front. Pharmacol. 11, 1171 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like also to thank the Department of Physical Therapy (Congdon School of Health Sciences) for the use of shared lab space and equipment. The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the authors, contributors, or publisher.

Funding

Support for this work was provided by the Department of Exercise Science within the Congdon School of Health Sciences.

Author information

Authors and Affiliations

Authors

Contributions

M.E.R. and C.N.R. conducted experiments and assisted with manuscript preparation. R.A.V. conceived the study, conducted and oversaw experiments, performed all statistical analyses, and oversaw manuscript preparation. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Roger A. Vaughan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, M.E., Rivera, C.N. & Vaughan, R.A. Excess branched-chain amino acids alter myotube metabolism and substrate preference which is worsened by concurrent insulin resistance. Endocrine 76, 18–28 (2022). https://doi.org/10.1007/s12020-021-02939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02939-z

Keywords

Navigation