Log in

Bone Quality Assessment Techniques: Geometric, Compositional, and Mechanical Characterization from Macroscale to Nanoscale

  • Bone quality
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

This review presents an overview of the characterization techniques available to experimentally evaluate bone quality, defined as the geometric and material factors that contribute to fracture resistance independently of areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry. The methods available for characterization of the geometric, compositional, and mechanical properties of bone across multiple length scales are summarized, along with their outcomes and their advantages and disadvantages. Examples of how each technique is used are discussed, as well as practical concerns such as sample preparation and whether or not each testing method is destructive. Techniques that can be used in vivo and those that have been recently improved or developed are emphasized, including high-resolution peripheral quantitative computed tomography to evaluate geometric properties and reference point indentation to evaluate material properties. Because no single method can completely characterize bone quality, we provide a framework for how multiple characterization methods can be used together to generate a more comprehensive analysis of bone quality to complement aBMD in fracture risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12(12):989–95.

    Article  CAS  PubMed  Google Scholar 

  2. Donnelly E, Lane JM, Boskey AL. Research perspectives: the 2013 AAOS/ORS research symposium on bone quality and fracture prevention. J Orthop Res. 2014;32(7):855–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berger A. Magnetic resonance imaging. BMJ. 2002;324(7328):35.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Choël L, Last D, Duboeuf F, Seurin MJ, Lissac M, Briguet A, Guillot G, Choel L, Last D, Duboeuf F, Seurin MJ, Lissac M, Briguet A, Guillot G. Trabecular alveolar bone microarchitecture in the human mandible using high resolution magnetic resonance imaging. Dentomaxillofacial Radiol. 2004;33(3):177–82.

    Article  Google Scholar 

  5. Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin N Am. 2010;48(3):601–21.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chang G, Deniz CM, Honig S, Egol K, Regatte RR, Zhu Y, Sodickson DK, Brown R. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging. J Magn Reson Imaging. 2014;39(6):1384–93.

    Article  PubMed  Google Scholar 

  7. Magland JF, Rajapakse CS, Wright AC, Acciavatti R, Wehrli FW. 3D fast spin echo with out-of-slab cancellation: a technique for high-resolution structural imaging of trabecular bone at 7 Tesla. Magn Reson Med. 2010;63(3):719–27.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Majumdar S. Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging. 2002;13(5):323–34.

    Article  PubMed  Google Scholar 

  9. Wehrli FW, Ladinsky GA, Jones C, Benito M, Magland J, Vasilic B, Popescu AM, Zemel B, Cucchiara AJ, Wright AC, Song HK, Saha PK, Peachey H, Snyder PJ. In vivo magnetic resonance detects rapid remodeling changes in the topology of the trabecular bone network after menopause and the protective effect of estradiol. J Bone Miner Res. 2008;23(5):730–40.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res. 1997;12(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  11. Rajapakse CS, Magland J, Zhang H, Liu XS, Wehrli SL, Guo XE, Wehrli FW. Implications of noise and resolution on mechanical properties of trabecular bone estimated by image-based finite-element analysis. J Orthop Res. 2009;27(10):1263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for the assessment of bone structure and function. NMR Biomed. 2006;19(7):731–64.

    Article  PubMed  Google Scholar 

  13. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions.

  14. Genant HK, Engelke K, Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology. 2008;47(SUPPL. 4):iv9–16.

    PubMed  PubMed Central  Google Scholar 

  15. Bousson V, Le Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo J-D. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006;17(6):855–64.

    Article  CAS  PubMed  Google Scholar 

  16. Lala D, Cheung AM, Lynch CL, Inglis D, Gordon C, Tomlinson G, Giangregorio L. Measuring apparent trabecular structure with pQCT: a comparison with HR-pQCT. J Clin Densitom. 2014;17(1):47–53.

    Article  PubMed  Google Scholar 

  17. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Geusens P, Chapurlat R, Schett G, Ghasem-Zadeh A, Seeman E, de Jong J, van den Bergh J. High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nat Rev Rheumatol. 2014;10(5):304–13.

    Article  PubMed  Google Scholar 

  19. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15.

    Article  CAS  PubMed  Google Scholar 

  20. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone. 2010;47(3):519–28.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, Link TM. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(11):5045–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bala Y, Chapurlat R, Cheung AM, Felsenberg D, Laroche M, Morris E, Reeve J, Thomas T, Zanchetta J, Bock O, Ghasem-Zadeh A, Djoumessi RMZ, Seeman E, Rizzoli R. Risedronate slows or partly reverses cortical and trabecular microarchitectural deterioration in postmenopausal women. J Bone Miner Res. 2014;29(2):380–8.

    Article  CAS  PubMed  Google Scholar 

  23. Vilayphiou N, Boutroy S, Szulc P, Van Rietbergen B, Munoz F, Delmas PD, Chapurlat R. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res. 2011;26(5):965–73.

    Article  PubMed  Google Scholar 

  24. Nishiyama KK, Shane E. Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep. 2013;11(2):147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, Brown JP, Ste-Marie LG, Kremer R, Erlandson MC, Dian L, Burghardt AJ, Boyd SK. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the canadian bone strength working group. Curr Osteoporos Rep. 2013;11(2):136–46.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cooper D, Turinsky A, Sensen C, Hallgrimsson B. Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcif Tissue Int. 2007;80(3):211–9.

    Article  CAS  PubMed  Google Scholar 

  27. Boyd SK, Davison P, Müller R, Gasser JA. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone. 2006;39(4):854–62.

    Article  PubMed  Google Scholar 

  28. Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, Shane E, Plavetić K, Müller R, Bilezikian J, Lindsay R. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16(10):1846–53.

    Article  CAS  PubMed  Google Scholar 

  29. Armas LAG, Akhter MP, Drincic A, Recker RR. Trabecular bone histomorphometry in humans with type 1 diabetes mellitus. Bone. 2012;50(1):91–6.

    Article  PubMed  Google Scholar 

  30. Wang X, Masse DB, Leng H, Hess KP, Ross RD, Roeder RK, Niebur GL. Detection of trabecular bone microdamage by micro-computed tomography. J Biomech. 2007;40(15):3397–403.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tang SY, Vashishth D. A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone. Bone. 2007;40(5):1259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong P, Haupert S, Hesse B, Langer M, Gouttenoire P-J, Bousson V, Peyrin F. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone. 2014;60:172–85.

    Article  PubMed  Google Scholar 

  33. Giessibl FJ. AFM’s path to atomic resolution. Mater Today. 2005;8(5):32–41.

    Article  CAS  Google Scholar 

  34. Revenko I, Sommer F, Minh DT, Garrone R, Franc JM. Atomic force microscopy study of the collagen fibre structure. Biol Cell. 1994;80(1):67–9.

    Article  CAS  PubMed  Google Scholar 

  35. Baselt DR, Revel JP, Baldeschwieler JD. Subfibrillar structure of type I collagen observed by atomic force microscopy. Biophys J. 1993;65(6):2644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thurner PJ, Oroudjev E, Jungmann R, Kreutz C, Kindt JH, Schitter G, et al. Imaging of bone ultrastructure using atomic force microscopy. In: Modern research and educational topics in microscopy. 3rd ed. Badajoz: Formatex; 2007. pp. 37–48.

  37. Casuso I, Kodera N, Le Grimellec C, Ando T, Scheuring S. Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane. Biophys J. 2009;97(5):1354–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Jong WF. La substance minérale dans les os. Recl des Trav Chim des Pays-Bas. 2010;45(6):445–8.

    Article  Google Scholar 

  39. Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ. X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int. 1983;35(1):202–9.

    Article  CAS  PubMed  Google Scholar 

  40. Handschin RG, Stern WB. X-ray diffraction studies on the lattice perfection of human bone apatite (Crista Iliaca). Bone. 1995;16(4 SUPPL.):S355–63.

    Article  Google Scholar 

  41. Eanes ED, Hailer AW. The effect of fluoride on the size and morphology of apatite crystals grown from physiologic solutions. Calcif Tissue Int. 1998;63(3):250–7.

    Article  CAS  PubMed  Google Scholar 

  42. Tadano S, Giri B. X-ray diffraction as a promising tool to characterize bone nanocomposites. Sci Technol Adv Mater. 2016;12(6):064708.

    Article  CAS  Google Scholar 

  43. Fratzl P, Groschner M, Vogl G, Plenk H, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K. Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res. 1992;7(3):329–34.

    Article  CAS  PubMed  Google Scholar 

  44. Georgiadis M, Guizar-Sicairos M, Zwahlen A, Trüssel AJ, Bunk O, Müller R, Schneider P. 3D scanning SAXS: a novel method for the assessment of bone ultrastructure orientation. Bone. 2015;71:42–52.

    Article  CAS  PubMed  Google Scholar 

  45. Almer JD, Stock SR. Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. J Struct Biol. 2005;152(1):14–27.

    Article  CAS  PubMed  Google Scholar 

  46. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci. 2006;103(47):17741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brock GR, Kim G, Ingraffea AR, Andrews JC, Pianetta P, van der Meulen MCH. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission X-ray microscopy. PLoS ONE. 2013;8(3):e57942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Currey JD. Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc B Biol Sci. 1984;304(1121):509–18.

    Article  CAS  Google Scholar 

  49. Sasaki N, Enyot A. Viscoelastic properties of bone as a function of water content. J Biomech. 1995;28(1):130–815.

    Google Scholar 

  50. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde L. Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int. 1999;65(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  51. Burstein AH, Zika JM, Heiple KG, Klein L. Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg Am. 1975;57(7):956–61.

    CAS  PubMed  Google Scholar 

  52. Robson MD, Gatehouse PD, Bydder GM, Neubauer S. Human Imaging of phosphorus in cortical and trabecular bone in vivo. Magn Reson Med. 2004;51(5):888–92.

    Article  CAS  PubMed  Google Scholar 

  53. Kuhn LT, Grynpas MD, Rey CC, Wu Y, Ackerman JL, Glimcher MJ. A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages. Calcif Tissue Int. 2008;83(2):146–54.

    Article  CAS  PubMed  Google Scholar 

  54. Wehrli FW, Fernandez-Seara MA. Nuclear magnetic resonance studies of bone water. Ann Biomed Eng. 2005;33(1):79–86.

    Article  PubMed  Google Scholar 

  55. Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97(3):292–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nyman JS, Ni Q, Nicolella DP, Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone. 2008;42(1):193–9.

    Article  CAS  PubMed  Google Scholar 

  57. Singh C, Rai RK, Kayastha AM, Sinha N. Ultra fast magic angle spinning solid-state NMR spectroscopy of intact bone. Magn Reson Chem. 2016;54(2):132–5.

    Article  CAS  PubMed  Google Scholar 

  58. Mroue KH, Nishiyama Y, Kumar Pandey M, Gong B, McNerny E, Kohn DH, Morris MD, Ramamoorthy A. Proton-detected solid-state NMR spectroscopy of bone with ultrafast magic angle spinning. Sci Rep. 2015;5:11991.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Boskey AL, Mendelsohn R. Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc. 2005;38(1–2):107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boskey A, Mendelsohn R. Infrared analysis of bone in health and disease. J Biomed Opt. 2005;10(3):031102–0311029.

    Article  PubMed  CAS  Google Scholar 

  61. Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey AL. FTIRI parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int. 2013;92(5):418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paschalis EP, Jacenko O, Olsen B, de Crombrugghe B, Boskey AL. The role of type X collagen in endochondral ossification as deduced by Fourier transform infrared microscopy analysis. Connect Tissue Res. 1996;35(1–4):371–7.

    Article  CAS  PubMed  Google Scholar 

  63. Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall’Ara E, Varga P, Zysset P, Klaushofer K, Roschger P. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone. 2011;49(6):1232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL. Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res. 2012;27(3):672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt. 2000;5(3):259–68.

    Article  CAS  PubMed  Google Scholar 

  66. Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep. 2015;4:620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matousek P, Stone N. Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. J Biophotonics. 2013;6(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  68. Buckley K, Kerns JG, Parker AW, Goodship AE, Matousek P. Decomposition of in vivo spatially offset Raman spectroscopy data using multivariate analysis techniques. J Raman Spectrosc. 2014;45(2):188–92.

    Article  CAS  Google Scholar 

  69. Hanlon E, Manoharan R, Koo T, Shafer K, Motz J, Fitzmaurice M, Kramer J, Itzkan I, Dasari R, Feld M. Prospects for in vivo Raman spectroscopy. Phys Med Biol. 2000;45(2):R1–59.

    Article  CAS  PubMed  Google Scholar 

  70. Geith T, Amarie S, Milz S, Bamberg F, Keilmann F. Visualisation of methacrylate-embedded human bone sections by infrared nanoscopy. J Biophotonics. 2014;7(6):418–24.

    Article  CAS  PubMed  Google Scholar 

  71. Boyde A. Improved digital SEM of cancellous bone: scanning direction of detection, through focus for in-focus and sample orientation. J Anat. 2003;202(2):183–94.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Boyde A, Jones SJ. Scanning electron microscopy of bone: instrument, specimen, and issues. Microsc Res Tech. 1996;33(2):92–120.

    Article  CAS  PubMed  Google Scholar 

  73. Braidotti P, Branca FP, Stagni L. Scanning electron microscopy of human cortical bone failure surfaces. J Biomech. 1997;30(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  74. Perdikouri C, Tagil M, Isaksson H. Characterizing the composition of bone formed during fracture healing using scanning electron microscopy techniques. Calcif Tissue Int. 2015;96(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  75. Boyde A, Maconnachie E, Reid SA, Delling G, Mundy GR. Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc. 1986;Pt 4:1537–54.

    PubMed  Google Scholar 

  76. Roschger P, Fratzl P, Eschberger J, Klaushofer K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone. 1998;23(4):319–26.

    Article  CAS  PubMed  Google Scholar 

  77. Sutton-Smith P, Beard H, Fazzalari N. Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness. J Microsc. 2008;229(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  78. Blouin S, Puchegger S, Roschger A, Berzlanovich A, Fratzl P, Klaushofer K, Roschger P. Map** dynamical mechanical properties of osteonal bone by scanning acoustic microscopy in time-of-flight mode. Microsc Microanal. 2014;20(3):1–13.

    Article  CAS  Google Scholar 

  79. Eyre DR, Dickson IR, Van Ness K. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J. 1988;252(2):495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998;22(3):181–7.

    Article  CAS  PubMed  Google Scholar 

  81. Uebelhart D, Gineyts E, Chapuy MC, Delmas PD. Urinary excretion of pyridinium crosslinks: a new marker of bone resorption in metabolic bone disease. Bone Miner. 1990;8(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  82. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214.

    Article  CAS  PubMed  Google Scholar 

  83. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A. Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci. 2005;1043:710–7.

    Article  CAS  PubMed  Google Scholar 

  84. Iafisco M, Foltran I, Sabbatini S, Tosi G, Roveri N. Electrospun nanostructured fibers of collagen-biomimetic apatite on titanium alloy. Bioinorg Chem Appl. 2012;2012:123953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39(6):1173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Carter DR, Hayes WC, Schurman DJ. Fatigue life of compact bone—II. Effects of microstructure and density. J Biomech. 1976;9(4):211–8.

    Article  CAS  PubMed  Google Scholar 

  87. Carter DR, Hayes WC. Compact bone fatigue damage—I. Residual strength and stiffness. J Biomech. 1977;10(5–6):325–37.

    Article  CAS  PubMed  Google Scholar 

  88. Ritchie RO, Koester KJ, Ionova S, Yao W, Lane NE, Ager JW. Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone. 2008;43(5):798–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bonfield W. Advances in the fracture mechanics of cortical bone. J Biomech. 1987;20(11–12):1071–81.

    Article  CAS  PubMed  Google Scholar 

  90. Ural A, Vashishth D. Hierarchical perspective of bone toughness—from molecules to fracture. Int Mater Rev. 2014;59(5):245–63.

    Article  CAS  Google Scholar 

  91. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14(4):595–608.

    Article  CAS  PubMed  Google Scholar 

  92. Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH, Wang X. The influence of water removal on the strength and toughness of cortical bone. J Biomech. 2006;39(5):931–8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Currey JD. The structure and mechanics of bone. J Mater Sci. 2012;47(1):41–54.

    Article  CAS  Google Scholar 

  94. Van der Meulen MCH, Jepsen KJ, Miki B. Understanding bone strength: size isn’t everything. Bone. 2001;29(2):101–4.

    Article  PubMed  Google Scholar 

  95. Müller R, Hannan M, Smith SY, Bauss F. Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J Bone Miner Res. 2004;19(11):1787–96.

    Article  PubMed  CAS  Google Scholar 

  96. Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006;17(10):1514–23.

    Article  CAS  PubMed  Google Scholar 

  97. Currey JD. The effect of porosity and mineal content on the young’s modulus of elasticity of compact bone. J Biomech. 1988;21(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  98. Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26(1):1–8.

    Article  PubMed  Google Scholar 

  99. Goldstein SA. The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech. 1987;20(11–12):1055–61.

    Article  CAS  PubMed  Google Scholar 

  100. Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975;8(6):393IN9397–396IN11405.

    Article  Google Scholar 

  101. Tang SY, Allen MR, Phipps R, Burr DB, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int. 2009;20(6):887–94.

    Article  CAS  PubMed  Google Scholar 

  102. Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, Busse B, Alliston T, Ager JW, Ritchie RO. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci USA. 2011;108(35):14416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zioupos P, Currey J. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  104. Fazzalari NL, Forwood MR, Smith K, Manthey BA, Herreen P. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone. 1998;22(4):381–8.

    Article  CAS  PubMed  Google Scholar 

  105. Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee AN, van der Ham F, DeGroot J, Banks RA, Keaveny TM. Trabecular microfracture and the influence of pyridinium and non- enzymatic glycation mediated collagen cross-links. Bone. 2005;37(6):825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Silva MJ, Brodt MD, Fan Z, Rho J-Y. Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. J Biomech. 2004;37:1639–46.

    Article  PubMed  Google Scholar 

  107. Zysset PK. Indentation of bone tissue: a short review. Osteoporos Int. 2009;20(6):1049–55.

    Article  CAS  PubMed  Google Scholar 

  108. Hoffler CE. An application of nanoindentation technique to measure bone tissue lamellae properties. J Biomech Eng. 2005;127(7):1046.

    Article  PubMed  Google Scholar 

  109. Weaver JK. The microscopic hardness of bone. J Bone Joint Surg. 1966;48(2):273–88.

    CAS  PubMed  Google Scholar 

  110. Ziv V, Wagner HD, Weiner S. Microstructure-microhardness relations in parallel-fibered and lamellar bone. Bone. 1996;18(5):417–28.

    Article  CAS  PubMed  Google Scholar 

  111. Dall’Ara E, Schmidt R, Zysset P. Microindentation can discriminate between damaged and intact human bone tissue. Bone. 2012;50(4):925–9.

    Article  PubMed  Google Scholar 

  112. Bridges D, Randall C, Hansma PK. A new device for performing reference point indentation without a reference probe. Rev Sci Instrum. 2012;83(4):044301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hansma P, Turner P, Drake B, Yurtsev E, Proctor A, Mathews P, Lulejian J, Lelujian J, Randall C, Adams J, Jungmann R, Garza-de-Leon F, Fantner G, Mkrtchyan H, Pontin M, Weaver A, Brown MB, Sahar N, Rossello R, Kohn D. The bone diagnostic instrument II: indentation distance increase. Rev Sci Instrum. 2008;79(6):064303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Allen MR, McNerny EM, Organ JM, Wallace JM. Response to comments on ‘true gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo’. J Bone Miner Res. 2015;30(12):2327.

    Article  PubMed  Google Scholar 

  115. Allen MR, McNerny EM, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015;30(9):1539–50.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Farr JN, Amin S, Khosla S. Regarding ‘true gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo’. J Bone Miner Res. 2015;30(12):2325–6.

    Article  PubMed  Google Scholar 

  117. Jepsen KJ, Schlecht SH. Biomechanical mechanisms: resolving the apparent conundrum of why individuals with type II diabetes show increased fracture incidence despite having normal BMD. J Bone Miner Res. 2014;29(4):784–6.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Karim L, Van Vliet M, Bouxsein ML. Comparison of cyclic and impact-based reference point indentation measurements in human cadaveric tibia. Bone. 2015. doi:10.1016/j.bone.2015.03.021.

  119. Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29(4):787–95.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mellibovsky L, Prieto-Alhambra D, Mellibovsky F, Güerri-Fernández R, Nogués X, Randall C, Hansma PK, Díez-Perez A. Bone tissue properties measurement by reference point indentation in glucocorticoid-induced osteoporosis. J Bone Miner Res. 2015;30(9):1651–6.

    Article  CAS  PubMed  Google Scholar 

  121. Güerri-Fernández RC, Nogués X, Quesada Gõmez JM, Torres Del Pliego E, Puig L, García-Giralt N, Yoskovitz G, Mellibovsky L, Hansma PK, Díez-Pérez A, Quesada Gómez JM, Torres Del Pliego E, Puig L, García-Giralt N, Yoskovitz G, Mellibovsky L, Hansma PK, Díez-Pérez A. Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls. J Bone Miner Res. 2013;28(1):162–8.

    Article  PubMed  CAS  Google Scholar 

  122. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–83.

    Article  CAS  Google Scholar 

  123. Zysset PK, Edward Guo X, Edward Hoffler C, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999;32(10):1005–12.

    Article  CAS  PubMed  Google Scholar 

  124. Hengsberger S, Kulk A, Zysset P. A combined atomic force microscopy and nonoindentation technique to investigate the elastic properties of bine structural units. Eur Cells Mater. 2001;1:12–7.

    CAS  Google Scholar 

  125. Constantinides G, Ravi Chandran KS, Ulm FJ, Van Vliet KJ. Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng, A. 2006;430(1–2):189–202.

    Article  CAS  Google Scholar 

  126. Uskokovic PS, Tang CY, Tsui CP, Ignjatovic N, Uskokovic DP. Micromechanical properties of a hydroxyapatite/poly-l-lactide biocomposite using nanoindentation and modulus map**. J Eur Ceram Soc. 2007;27(2–3):1559–64.

    Article  CAS  Google Scholar 

  127. Donnelly E, Williams RM, Downs SA, Dickinson ME, Baker SP, van der Meulen MCH. Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization. J Mater Res. 2006;21(08):2106–17.

    Article  CAS  Google Scholar 

  128. Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 1999;32(4):437–41.

    Article  CAS  PubMed  Google Scholar 

  129. Hengsberger S, Enstroem J, Peyrin F, Zysset P. How is the indentation modulus of bone tissue related to its macroscopic elastic response? A validation study. J Biomech. 2003;36(10):1503–9.

    Article  CAS  PubMed  Google Scholar 

  130. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater. 2007;6(6):454–62.

    Article  CAS  PubMed  Google Scholar 

  131. Donnelly E, Baker SP, Boskey AL, van der Meulen MCH. Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res A. 2006;77(2):426–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–50.

    Article  PubMed  Google Scholar 

  134. Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res. 2008;23(12):1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J, Shane E, Guo XE. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012;27(2):263–72.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Milovanovic P, Zimmermann EA, Riedel C, vom Scheidt A, Herzog L, Krause M, Djonic D, Djuric M, Püschel K, Amling M, Ritchie RO, Busse B. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials. 2015;45:46–55.

    Article  CAS  PubMed  Google Scholar 

  137. Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Rep. 2013;2:447. doi:10.1038/bonekey.2013.181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wallace JM, Chen Q, Fang M, Erickson B, Orr BG, Banaszak MM. Holl, “type i collagen exists as a distribution of nanoscale morphologies in teeth, bones, and tendons”. Langmuir. 2010;26(10):7349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH/NIAMS (K01AR064314) and NSF/CMMI (1452852) to ED and by NSF GRFP (DGE-1144153) to HBH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eve Donnelly.

Ethics declarations

Conflict of interest

Heather B. Hunt and Eve Donnelly declare that they have no conflict of interest.

Human or Animal Subjects

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunt, H.B., Donnelly, E. Bone Quality Assessment Techniques: Geometric, Compositional, and Mechanical Characterization from Macroscale to Nanoscale. Clinic Rev Bone Miner Metab 14, 133–149 (2016). https://doi.org/10.1007/s12018-016-9222-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-016-9222-4

Keywords

Navigation