Log in

Potential Role of Dipeptidyl Peptidase−4 in Regulating Mitochondria and Oxidative Stress in Cardiomyocytes

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Oxidative stress causes mitochondrial damage and bioenergetic dysfunction and inhibits adenosine triphosphate production, contributing to the pathogenesis of cardiac diseases. Dipeptidyl peptidase 4 (DPP4) is primarily a membrane-bound extracellular peptidase that cleaves Xaa-Pro or Xaa-Ala dipeptides from the N terminus of polypeptides. DPP4 inhibitors have been used in patients with diabetes and heart failure; however, they have led to inconsistent results. Although the enzymatic properties of DPP4 have been well studied, the substrate-independent functions of DPP4 have not. In the present study, we knocked down DPP4 in cultured cardiomyocytes to exclude the effects of differential alteration in the substrates and metabolites of DPP4 then compared the response between the knocked-down and wild-type cardiomyocytes during exposure to oxidative stress. H2O2 exposure induced DPP4 expression in both types of cardiomyocytes. However, knocking down DPP4 substantially reduced the loss of cell viability by preserving mitochondrial bioenergy, reducing intracellular reactive oxygen species production, and reducing apoptosis-associated protein expression. These findings demonstrate that inhibiting DPP4 improves the body’s defense against oxidative stress by enhancing Nrf2 and PGC-1α signaling and increasing superoxide dismutase and catalase activity. Our results indicate that DPP4 mediates the body’s response to oxidative stress in individuals with heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10 

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Abbreviations

ATP:

Adenosine triphosphate

ARE:

Antioxidant responsive elements

DHE:

Dihydroethidium

DPP4:

Dipeptidyl peptidase-4

Drp1:

Dynamin-related protein 1

FCCP:

Cyanide-4-(trifluoromethoxy) phenylhydrazone

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GLP-1:

Glucagon-like peptide-1

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide

Mfn1:

Mitofusin 1

Nrf2:

Nuclear factor erythroid 2–related factor 2

PARP:

Poly (ADP-ribose) polymerase

PGC-1ɑ:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

OCR:

Oxygen consumption rate

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

SOD:

Superoxide dismutases

TBST:

Tris-buffered saline with Tween 20

TMRM:

Tetramethylrhodamine

References

  1. Jafri, M. S., Dudycha, S. J., & O’Rourke, B. (2001). Cardiac energy metabolism: Models of cellular respiration. Annual Review of Biomedical Engineering, 3, 57–81.

    Article  CAS  PubMed  Google Scholar 

  2. Handy, D. E., & Loscalzo, J. (2012). Redox regulation of mitochondrial function. Antioxidants & Redox Signaling, 16, 1323–1367.

    Article  CAS  Google Scholar 

  3. Giordano, F. J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. The Journal of Clinical Investigation, 115, 500–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peoples, J. N., Saraf, A., Ghazal, N., Pham, T. T., & Kwong, J. Q. (2019). Mitochondrial dysfunction and oxidative stress in heart disease. Experimental & Molecular Medicine, 51, 1–13.

    Article  CAS  Google Scholar 

  5. Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94, 909–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Grey, A. D. (2005). Reactive oxygen species production in the mitochondrial matrix: Implications for the mechanism of mitochondrial mutation accumulation. Rejuvenation Research, 8, 13–17.

    Article  PubMed  Google Scholar 

  7. Gao, L., Laude, K., & Cai, H. (2008). Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. The Veterinary Clinics of North America. Small Animal Practice, 38, 137–155.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Buettner, G. R. (2011). Superoxide dismutase in redox biology: The roles of superoxide and hydrogen peroxide. Anti-Cancer Agents in Medicinal Chemistry, 11, 341–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heck, D. E., Shakarjian, M., Kim, H. D., Laskin, J. D., & Vetrano, A. M. (2010). Mechanisms of oxidant generation by catalase. Annals of the New York Academy of Sciences, 1203, 120–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou, B., & Tian, R. (2018). Mitochondrial dysfunction in pathophysiology of heart failure. The Journal of Clinical Investigation, 128, 3716–3726.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tufekci, K. U., Civi Bayin, E., Genc, S., & Genc, K. (2011). The Nrf2/ARE pathway: A promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinsons Disease, 2011, 314082.

    Google Scholar 

  12. Niture, S. K., Kaspar, J. W., Shen, J., & Jaiswal, A. K. (2010). Nrf2 signaling and cell survival. Toxicology and Applied Pharmacology, 244, 37–42.

    Article  CAS  PubMed  Google Scholar 

  13. Austin, S., & St-Pierre, J. (2012). PGC1alpha and mitochondrial metabolism–emerging concepts and relevance in ageing and neurodegenerative disorders. Journal of Cell Science, 125, 4963–4971.

    Article  CAS  PubMed  Google Scholar 

  14. Sharma, D. R., Sunkaria, A., Wani, W. Y., Sharma, R. K., Kandimalla, R. J., Bal, A., & Gill, K. D. (2013). Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1alpha expression. Toxicology and Applied Pharmacology, 273, 365–380.

    Article  CAS  PubMed  Google Scholar 

  15. Green, A., Hossain, T., & Eckmann, D. M. (2022). Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Front Cell Dev Biol, 10, 1010232.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, X., Guo, C., & Zhang, Q. (2023). Novel insights into the involvement of mitochondrial fission/fusion in heart failure: From molecular mechanisms to targeted therapies. Cell Stress and Chaperones, 28, 133–144.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mulvihill, E. E., & Drucker, D. J. (2014). Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocrine Reviews, 35, 992–1019.

    Article  CAS  PubMed  Google Scholar 

  18. Jose, T., & Inzucchi, S. E. (2012). Cardiovascular effects of the DPP-4 inhibitors. Diabetes & Vascular Disease Research, 9, 109–116.

    Article  Google Scholar 

  19. Fadini, G. P., Avogaro, A., Degli Esposti, L., Russo, P., Saragoni, S., Buda, S., Rosano, G., Pecorelli, S., Pani, L., & OsMed Health, D. B. N. (2015). Risk of hospitalization for heart failure in patients with type 2 diabetes newly treated with DPP-4 inhibitors or other oral glucose-lowering medications: A retrospective registry study on 127,555 patients from the nationwide osmed health-DB database. European Heart Journal, 36, 2454–2462.

    Article  CAS  PubMed  Google Scholar 

  20. Scirica, B. M., Bhatt, D. L., Braunwald, E., Steg, P. G., Davidson, J., Hirshberg, B., Ohman, P., Frederich, R., Wiviott, S. D., Hoffman, E. B., Cavender, M. A., Udell, J. A., Desai, N. R., Mosenzon, O., McGuire, D. K., Ray, K. K., Leiter, L. A., Raz, I., S-TS Committee Investigators. (2013). Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. New England Journal of Medicine, 369, 1317–1326.

    Article  CAS  PubMed  Google Scholar 

  21. Mulvihill, E. E., Varin, E. M., Ussher, J. R., Campbell, J. E., Bang, K. W., Abdullah, T., Baggio, L. L., & Drucker, D. J. (2016). Inhibition of dipeptidyl peptidase-4 impairs ventricular function and promotes cardiac fibrosis in high fat-fed diabetic mice. Diabetes, 65, 742–754.

    Article  CAS  PubMed  Google Scholar 

  22. Ku, H. C., Chen, W. P., & Su, M. J. (2013). DPP4 deficiency exerts protective effect against H2O2 induced oxidative stress in isolated cardiomyocytes. PLoS ONE, 8, e54518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Golightly, L. K., Drayna, C. C., & McDermott, M. T. (2012). Comparative clinical pharmacokinetics of dipeptidyl peptidase-4 inhibitors. Clinical Pharmacokinetics, 51, 501–514.

    Article  CAS  PubMed  Google Scholar 

  24. Sarashina, A., Sesoko, S., Nakashima, M., Hayashi, N., Taniguchi, A., Horie, Y., Graefe-Mody, E. U., Woerle, H. J., & Dugi, K. A. (2010). Linagliptin, a dipeptidyl peptidase-4 inhibitor in development for the treatment of type 2 diabetes mellitus: A phase I, randomized, double-blind, placebo-controlled trial of single and multiple escalating doses in healthy adult male Japanese subjects. Clinical Therapeutics, 32, 1188–1204.

    Article  CAS  PubMed  Google Scholar 

  25. Bergman, A., Ebel, D., Liu, F., Stone, J., Wang, A., Zeng, W., Chen, L., Dilzer, S., Lasseter, K., Herman, G., Wagner, J., & Krishna, R. (2007). Absolute bioavailability of sitagliptin, an oral dipeptidyl peptidase-4 inhibitor, in healthy volunteers. Biopharmaceutics & Drug Disposition, 28, 315–322.

    Article  CAS  Google Scholar 

  26. Chen, X. W., He, Z. X., Zhou, Z. W., Yang, T., Zhang, X., Yang, Y. X., Duan, W., & Zhou, S. F. (2015). An update on the clinical pharmacology of the dipeptidyl peptidase 4 inhibitor alogliptin used for the treatment of type 2 diabetes mellitus. Clinical and Experimental Pharmacology and Physiology, 42, 1225–1238.

    Article  CAS  PubMed  Google Scholar 

  27. Sakamuri, S., Sperling, J. A., Sure, V. N., Dholakia, M. H., Peterson, N. R., Rutkai, I., Mahalingam, P. S., Satou, R., & Katakam, P. V. G. (2018). Measurement of respiratory function in isolated cardiac mitochondria using seahorse XFe24 analyzer: Applications for aging research. Geroscience, 40, 347–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, S. Y., Hsin, L. W., Su, M. J., ChangChien, C. C., & Ku, H. C. (2019). A novel isoquinoline derivative exhibits anti-inflammatory properties and improves the outcomes of endotoxemia. Pharmacological Reports, 71, 1281–1288.

    Article  CAS  PubMed  Google Scholar 

  29. Westphal, D., Dewson, G., Czabotar, P. E., & Kluck, R. M. (2011). Molecular biology of bax and bak activation and action. Biochimica et Biophysica Acta, 1813, 521–531.

    Article  CAS  PubMed  Google Scholar 

  30. Chaitanya, G. V., Steven, A. J., & Babu, P. P. (2010). PARP-1 cleavage fragments: Signatures of cell-death proteases in neurodegeneration. Cell Communication and Signaling: CCS, 8, 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soldani, C., & Scovassi, A. I. (2002). Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: An update. Apoptosis, 7, 321–328.

    Article  CAS  PubMed  Google Scholar 

  32. Valencia, I., Peiro, C., Lorenzo, O., Sanchez-Ferrer, C. F., Eckel, J., & Romacho, T. (2020). DPP4 and ACE2 in diabetes and COVID-19: Therapeutic targets for cardiovascular complications? Frontiers in Pharmacology, 11, 1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, S. Y., Wu, S. T., Liang, Y. J., Su, M. J., Huang, C. W., Jao, Y. H., & Ku, H. C. (2020). Soluble dipeptidyl peptidase-4 induces fibroblast activation through proteinase-activated receptor-2. Frontiers in Pharmacology, 11, 552818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sell, H., Bluher, M., Kloting, N., Schlich, R., Willems, M., Ruppe, F., Knoefel, W. T., Dietrich, A., Fielding, B. A., Arner, P., Frayn, K. N., & Eckel, J. (2013). Adipose dipeptidyl peptidase-4 and obesity: Correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care, 36, 4083–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao, X., Deiuliis, J. A., Mihai, G., Varghese, J., **a, C., Frieman, M. B., Sztalryd, C., Sun, X. J., Quon, M. J., Taylor, S. I., Rajagopalan, S., & Zhong, J. (2018). Monocyte DPP4 expression in human atherosclerosis is associated with obesity and dyslipidemia. Diabetes Care, 41, e1–e3.

    Article  CAS  PubMed  Google Scholar 

  36. Soare, A., Gyorfi, H. A., Matei, A. E., Dees, C., Rauber, S., Wohlfahrt, T., Chen, C. W., Ludolph, I., Horch, R. E., Bauerle, T., von Horsten, S., Mihai, C., Distler, O., Ramming, A., Schett, G., & Distler, J. H. W. (2020). Dipeptidylpeptidase 4 as a marker of activated fibroblasts and a potential target for the treatment of fibrosis in systemic sclerosis. Arthritis & Rhematology, 72, 137–149.

    Article  CAS  Google Scholar 

  37. Kaifu, K., Ueda, S., Nakamura, N., Matsui, T., Yamada-Obara, N., Ando, R., Kaida, Y., Nakata, M., Matsukuma-Toyonaga, M., Higashimoto, Y., Fukami, K., Suzuki, Y., Okuda, S., & Yamagishi, S. I. (2018). Advanced glycation end products evoke inflammatory reactions in proximal tubular cells via autocrine production of dipeptidyl peptidase-4. Microvascular Research, 120, 90–93.

    Article  CAS  PubMed  Google Scholar 

  38. Gomez, N., Matheeussen, V., Damoiseaux, C., Tamborini, A., Merveille, A. C., Jespers, P., Michaux, C., Clercx, C., De Meester, I., & Mc Entee, K. (2012). Effect of heart failure on dipeptidyl peptidase IV activity in plasma of dogs. Journal of Veterinary Internal Medicine, 26, 929–934.

    Article  CAS  PubMed  Google Scholar 

  39. Zhong, J., Kankanala, S., & Rajagopalan, S. (2016). Dipeptidyl peptidase-4 inhibition: Insights from the bench and recent clinical studies. Current Opinion in Lipidology, 27, 484–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., & Sollott, S. J. (2000). Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. Journal of Experimental Medicine, 192, 1001–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, C., & Youle, R. J. (2009). The role of mitochondria in apoptosis*. Annual Review of Genetics, 43, 95–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, J., & Yuan, J. (2008). Caspases in apoptosis and beyond. Oncogene, 27, 6194–6206.

    Article  CAS  PubMed  Google Scholar 

  43. Pintana, H., Apaijai, N., Chattipakorn, N., & Chattipakorn, S. C. (2013). DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. Journal of Endocrinology, 218, 1–11.

    Article  CAS  PubMed  Google Scholar 

  44. Takada, S., Masaki, Y., Kinugawa, S., Matsumoto, J., Furihata, T., Mizushima, W., Kadoguchi, T., Fukushima, A., Homma, T., Takahashi, M., Harashima, S., Matsushima, S., Yokota, T., Tanaka, S., Okita, K., & Tsutsui, H. (2016). Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovascular Research, 111, 338–347.

    Article  CAS  PubMed  Google Scholar 

  45. Qian, L., Zhu, Y., Deng, C., Liang, Z., Chen, J., Chen, Y., Wang, X., Liu, Y., Tian, Y., & Yang, Y. (2024). Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduction and Targeted Therapy, 9, 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takeda, K., Sawazaki, H., Takahashi, H., Yeh, Y. S., Jheng, H. F., Nomura, W., Ara, T., Takahashi, N., Seno, S., Osato, N., Matsuda, H., Kawada, T., & Goto, T. (2018). The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin enhances brown adipose tissue function, thereby preventing obesity in mice. FEBS Open Bio, 8, 1782–1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chae, Y. N., Kim, T. H., Kim, M. K., Shin, C. Y., Jung, I. H., Sohn, Y. S., & Son, M. H. (2015). Beneficial effects of evogliptin, a novel dipeptidyl peptidase 4 inhibitor, on adiposity with increased ppargc1a in white adipose tissue in obese mice. PLoS ONE, 10, e0144064.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zillessen, P., Celner, J., Kretschmann, A., Pfeifer, A., Racke, K., & Mayer, P. (2016). Metabolic role of dipeptidyl peptidase 4 (DPP4) in primary human (pre)adipocytes. Science and Reports, 6, 23074.

    Article  CAS  Google Scholar 

  49. Li, W., & Kong, A. N. (2009). Molecular mechanisms of Nrf2-mediated antioxidant response. Molecular Carcinogenesis, 48, 91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu, H., Cui, W., & Klaassen, C. D. (2011). Nrf2 protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced oxidative injury and steatohepatitis. Toxicology and Applied Pharmacology, 256, 122–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong, W., Yang, B., Wang, L., Li, B., Guo, X., Zhang, M., Jiang, Z., Fu, J., Pi, J., Guan, D., & Zhao, R. (2018). Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicology and Applied Pharmacology, 346, 28–36.

    Article  CAS  PubMed  Google Scholar 

  52. Dreger, H., Westphal, K., Weller, A., Baumann, G., Stangl, V., Meiners, S., & Stangl, K. (2009). Nrf2-dependent upregulation of antioxidative enzymes: A novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovascular Research, 83, 354–361.

    Article  CAS  PubMed  Google Scholar 

  53. Miller, C. J., Gounder, S. S., Kannan, S., Goutam, K., Muthusamy, V. R., Firpo, M. A., Symons, J. D., Paine, R., 3rd., Hoidal, J. R., & Rajasekaran, N. S. (2012). Disruption of Nrf2/ARE signaling impairs antioxidant mechanisms and promotes cell degradation pathways in aged skeletal muscle. Biochimica et Biophysica Acta, 1822, 1038–1050.

    Article  CAS  PubMed  Google Scholar 

  54. Zhou, X., Wang, W., Wang, C., Zheng, C., Xu, X., Ni, X., Hu, S., Cai, B., Sun, L., Shi, K., Chen, B., Zhou, M., & Chen, G. (2019). DPP4 inhibitor attenuates severe acute pancreatitis-associated intestinal inflammation via Nrf2 signaling. Oxidative Medicine and Cellular Longevity, 2019, 6181754.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dinkova-Kostova, A. T., & Abramov, A. Y. (2015). The emerging role of Nrf2 in mitochondrial function. Free Radical Biology & Medicine, 88, 179–188.

    Article  CAS  Google Scholar 

  56. Cherry, A. D., Suliman, H. B., Bartz, R. R., & Piantadosi, C. A. (2014). Peroxisome proliferator-activated receptor gamma co-activator 1-alpha as a critical co-activator of the murine hepatic oxidative stress response and mitochondrial biogenesis in Staphylococcus aureus sepsis. Journal of Biological Chemistry, 289, 41–52.

    Article  CAS  PubMed  Google Scholar 

  57. Baldelli, S., Aquilano, K., & Ciriolo, M. R. (2013). Punctum on two different transcription factors regulated by PGC-1alpha: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochimica et Biophysica Acta, 1830, 4137–4146.

    Article  CAS  PubMed  Google Scholar 

  58. Geng, T., Li, P., Okutsu, M., Yin, X., Kwek, J., Zhang, M., & Yan, Z. (2010). PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. American Journal of Physiology. Cell Physiology, 298, C572-579.

    Article  CAS  PubMed  Google Scholar 

  59. Kang, C., & Li Ji, L. (2012). Role of PGC-1alpha signaling in skeletal muscle health and disease. Annals of the New York Academy of Sciences, 1271, 110–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wenz, T., Rossi, S. G., Rotundo, R. L., Spiegelman, B. M., & Moraes, C. T. (2009). Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proceedings of the National Academy of Sciences, 106, 20405–20410.

    Article  CAS  Google Scholar 

  61. **ao, W., & Goswami, P. C. (2015). Down-regulation of peroxisome proliferator activated receptor gamma coactivator 1alpha induces oxidative stress and toxicity of 1-(4-chlorophenyl)-benzo-2,5-quinone in HaCaT human keratinocytes. Toxicology in Vitro, 29, 1332–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jezek, J., Cooper, K. F., & Strich, R. (2021). The impact of mitochondrial fission-stimulated ROS production on pro-apoptotic chemotherapy. Biology (Basel), 10, 33.

    CAS  PubMed  Google Scholar 

  63. Yu, T., Wang, L., & Yoon, Y. (2015). Morphological control of mitochondrial bioenergetics. Front Bioscience, 20, 229–246.

    Article  CAS  Google Scholar 

  64. Sessions, D. T., Kim, K. B., Kashatus, J. A., Churchill, N., Park, K. S., Mayo, M. W., Sesaki, H., & Kashatus, D. F. (2022). Opa1 and Drp1 reciprocally regulate cristae morphology, ETC function, and NAD(+) regeneration in KRas-mutant lung adenocarcinoma. Cell Reports, 41, 111818.

    Article  CAS  PubMed  Google Scholar 

  65. Hu, J., Zhang, Y., Jiang, X., Zhang, H., Gao, Z., Li, Y., Fu, R., Li, L., Li, J., Cui, H., & Gao, N. (2019). ROS-mediated activation and mitochondrial translocation of CaMKII contributes to Drp1-dependent mitochondrial fission and apoptosis in triple-negative breast cancer cells by isorhamnetin and chloroquine. Journal of Experimental & Clinical Cancer Research, 38, 225.

    Article  Google Scholar 

  66. Chen, L., Qin, Y., Liu, B., Gao, M., Li, A., Li, X., & Gong, G. (2022). PGC-1alpha-mediated mitochondrial quality control: Molecular mechanisms and implications for heart failure. Frontiers in Cell and Developmental Biology, 10, 871357.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sui, Y. B., **u, J., Wei, J. X., Pan, P. P., Sun, B. H., & Liu, L. (2021). Shen Qi Li **n formula improves chronic heart failure through balancing mitochondrial fission and fusion via upregulation of PGC-1alpha. The Journal of Physiological Sciences, 71, 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Halling, J. F., Ringholm, S., Olesen, J., Prats, C., & Pilegaard, H. (2017). Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1alpha dependent manner. Experimental Gerontology, 96, 1–6.

    Article  CAS  PubMed  Google Scholar 

  69. Thomas, L., Eckhardt, M., Langkopf, E., Tadayyon, M., Himmelsbach, F., & Mark, M. (2008). (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. Journal of Pharmacology and Experimental Therapeutics, 325, 175–182.

    Article  CAS  PubMed  Google Scholar 

  70. Messori, A., Fadda, V., Maratea, D., Trippoli, S., & Marinai, C. (2014). Testing the therapeutic equivalence of alogliptin, linagliptin, saxagliptin, sitagliptin or vildagliptin as monotherapy or in combination with metformin in patients with type 2 diabetes. Diabetes Therapy, 5, 341–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sano, M. (2019). Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk. Journal of Cardiology, 73, 28–32.

    Article  PubMed  Google Scholar 

  72. Rosenstock, J., Perkovic, V., Johansen, O. E., Cooper, M. E., Kahn, S. E., Marx, N., Alexander, J. H., Pencina, M., Toto, R. D., Wanner, C., Zinman, B., Woerle, H. J., Baanstra, D., Pfarr, E., Schnaidt, S., Meinicke, T., George, J. T., von Eynatten, M., McGuire, D. K., & Investigators, C. (2019). Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA randomized clinical trial. JAMA, 321, 69–79.

    Article  CAS  PubMed  Google Scholar 

  73. Green, J. B., Bethel, M. A., Armstrong, P. W., Buse, J. B., Engel, S. S., Garg, J., Josse, R., Kaufman, K. D., Koglin, J., Korn, S., Lachin, J. M., McGuire, D. K., Pencina, M. J., Standl, E., Stein, P. P., Suryawanshi, S., Van de Werf, F., Peterson, E. D., Holman, R. R., & Group, T. S. (2015). Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 373, 232–242.

    Article  CAS  PubMed  Google Scholar 

  74. Seferovic, P. M., Coats, A. J. S., Ponikowski, P., Filippatos, G., Huelsmann, M., Jhund, P. S., Polovina, M. M., Komajda, M., Seferovic, J., Sari, I., Cosentino, F., Ambrosio, G., Metra, M., Piepoli, M., Chioncel, O., Lund, L. H., Thum, T., De Boer, R. A., Mullens, W., … Rosano, G. M. C. (2020). European society of cardiology/heart failure association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure. European Journal of Heart Failure, 22, 196–213.

    Article  PubMed  Google Scholar 

  75. Yamaguchi, T., Watanabe, A., Tanaka, M., Shiota, M., Osada-Oka, M., Sano, S., Yoshiyama, M., Miura, K., Kitajima, S., Matsunaga, S., Tomita, S., Iwao, H., & Izumi, Y. (2019). A dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, attenuates cardiac dysfunction after myocardial infarction independently of DPP-4. Journal of Pharmacological Sciences, 139, 112–119.

    Article  CAS  PubMed  Google Scholar 

  76. Batchu, S. N., Yerra, V. G., Liu, Y., Advani, S. L., Klein, T., & Advani, A. (2020). The dipeptidyl peptidase-4 inhibitor linagliptin directly enhances the contractile recovery of mouse hearts at a concentration equivalent to that achieved with standard dosing in humans. International Journal of Molecular Sciences, 21, 5756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shi, S., Kanasaki, K., & Koya, D. (2016). Linagliptin but not sitagliptin inhibited transforming growth factor-beta2-induced endothelial DPP-4 activity and the endothelial-mesenchymal transition. Biochemical and Biophysical Research Communications, 471, 184–190.

    Article  CAS  PubMed  Google Scholar 

  78. Varin, E. M., Mulvihill, E. E., Beaudry, J. L., Pujadas, G., Fuchs, S., Tanti, J. F., Fazio, S., Kaur, K., Cao, X., Baggio, L. L., Matthews, D., Campbell, J. E., & Drucker, D. J. (2019). Circulating levels of soluble dipeptidyl peptidase-4 are dissociated from inflammation and induced by enzymatic DPP4 inhibition. Cell Metabolism, 29(320–334), e325.

    Google Scholar 

  79. Romacho, T., Vallejo, S., Villalobos, L. A., Wronkowitz, N., Indrakusuma, I., Sell, H., Eckel, J., Sanchez-Ferrer, C. F., & Peiro, C. (2016). Soluble dipeptidyl peptidase-4 induces microvascular endothelial dysfunction through proteinase-activated receptor-2 and thromboxane A2 release. Journal of Hypertension, 34, 869–876.

    Article  CAS  PubMed  Google Scholar 

  80. Huang, C. W., Lee, S. Y., Du, C. X., & Ku, H. C. (2023). Soluble dipeptidyl peptidase-4 induces epithelial-mesenchymal transition through tumor growth factor-beta receptor. Pharmacological Reports, 75, 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  81. Wronkowitz, N., Gorgens, S. W., Romacho, T., Villalobos, L. A., Sanchez-Ferrer, C. F., Peiro, C., Sell, H., & Eckel, J. (2014). Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochimica et Biophysica Acta, 1842, 1613–1621.

    Article  CAS  PubMed  Google Scholar 

  82. Valencia, I., Vallejo, S., Dongil, P., Romero, A., San Hipolito-Luengo, A., Shamoon, L., Posada, M., Garcia-Olmo, D., Carraro, R., Erusalimsky, J. D., Romacho, T., Peiro, C., & Sanchez-Ferrer, C. F. (2022). DPP4 promotes human endothelial cell senescence and dysfunction via the PAR2-COX-2-TP axis and NLRP3 inflammasome activation. Hypertension, 79, 1361–1373.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We like to thank the research funding from Ministry of Science and Technology, Taiwan (MOST 106-2321-B-030-002-MY3) and (MOST 109-2320-B-030-006-MY3). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: HCK. Performed the experiments: SYL, SDW, CHD, HCK. Analyzed the data: SYL, SDW, CHD, HCK. Wrote the manuscript: SYL, HCK. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hui-Chun Ku.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Handling Editor: Daniel Conklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SY., Wu, ST., Du, CX. et al. Potential Role of Dipeptidyl Peptidase−4 in Regulating Mitochondria and Oxidative Stress in Cardiomyocytes. Cardiovasc Toxicol (2024). https://doi.org/10.1007/s12012-024-09884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12012-024-09884-z

Keywords

Navigation