Log in

Review of Zinc Oxide Nanoparticles: Toxicokinetics, Tissue Distribution for Various Exposure Routes, Toxicological Effects, Toxicity Mechanism in Mammals, and an Approach for Toxicity Reduction

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 14 April 2023

This article has been updated

Abstract

Zinc oxide (ZnO) nanoparticles (NPs) are widely used as a sunscreen, antibacterial agent, dietary supplement, food additive, and semiconductor material. This review summarizes the biological fate following various exposure routes, toxicological effects, and toxicity mechanism of ZnO NPs in mammals. Furthermore, an approach to reduce the toxicity and biomedical applications of ZnO NPs are discussed. ZnO NPs are mainly absorbed as Zn2+ and partially as particles. Regardless of exposure route, elevated Zn concentration in the liver, kidney, lungs, and spleen are observed following ZnO NP exposure, and these are the target organs for ZnO NPs. The liver is the main organ responsible for ZnO NP metabolism and the NPs are mainly excreted in feces and partly in urine. ZnO NPs induce liver damage (oral, intraperitoneal, intravenous, and intratracheal exposure), kidney damage (oral, intraperitoneal, and intravenous exposure) and lung injury (airway exposure). Reactive oxygen species (ROS) generation and induction of oxidative stress may be a major toxicological mechanism for ZnO NPs. ROS are generated by both excess Zn ion release and the particulate effect resulting from the semiconductor or electronic properties of ZnO NPs. ZnO NP toxicity can be reduced by coating their surface with silica, which prevents Zn2+ release and ROS generation. Due to their superior characteristics, ZnO NPs are expected to be used for biomedical applications, such as bioimaging, drug delivery, and anticancer agents, and surface coatings and modification will expand the biomedical applications of ZnO NPs further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

Abbreviations

ZnO:

Zinc oxide

NPs:

Nanoparticles

8-OHdG:

8-Hydroxydeoxyguanosine

AST:

Aspartate transaminase

ALT:

Alanine transaminase

ALP:

Alkaline phosphatase

BUN:

Blood urea nitrogen

Cre:

Creatinine

IL1-β:

Interleukin1-β

LDH:

Lactate dehydrogenase

LD50 :

Lethal dose 50

MRT:

Mean residual time

MT:

Metallothionein

ROS:

Reactive oxygen species

TNF-α:

Tumor necrosis factor-α

IFN-γ:

Interferon-γ

References

  1. Subramaniam VD, Prasad SV, Banerjee A et al (2019) Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 42:84–93. https://doi.org/10.1080/01480545.2018.1491987

    Article  CAS  PubMed  Google Scholar 

  2. Senthilkumar K, Senthilkumar O, Yamauchi K et al (2009) Preparation of ZnO nanoparticles for bio-imaging applications. Phys Status Solidi B-Basic Solid State Phys 246:885–888. https://doi.org/10.1002/pssb.200880606

    Article  CAS  Google Scholar 

  3. Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  PubMed  Google Scholar 

  4. Madhumitha G, Elango G, Roopan SM (2016) Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol 100:571–581. https://doi.org/10.1007/s00253-015-7108-x

    Article  CAS  PubMed  Google Scholar 

  5. Baek M, Kim MK, Cho HJ et al (2011) Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge. J Phys Conf Ser 304:012044. https://doi.org/10.1088/1742-6596/304/1/012044

    Article  CAS  Google Scholar 

  6. Gulson B, McCall MJ, Bowman DM et al (2015) A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch Toxicol 89:1909–1930. https://doi.org/10.1007/s00204-015-1564-z

    Article  CAS  PubMed  Google Scholar 

  7. Hong TK, Tripathy N, Son HJ et al (2013) A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity. J Mater Chem B 1:2985–2992. https://doi.org/10.1039/c3tb20251h

    Article  CAS  PubMed  Google Scholar 

  8. Nishimoto N, Yamamae T, Kaku T et al (2008) Growth of Ga-doped ZnO by MOVPE using diisopropylzinc and tertiary butanol. J Cryst Growth 310:5003–5006. https://doi.org/10.1016/j.jcrysgro.2008.07.005

    Article  CAS  Google Scholar 

  9. Islam F, Shohag S, Uddin MJ et al (2022) Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials (Basel) 15:2160. https://doi.org/10.3390/ma15062160

    Article  CAS  PubMed  Google Scholar 

  10. **ong HM (2013) ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater 25(37):5329–5335. https://doi.org/10.1002/adma.201301732

    Article  CAS  PubMed  Google Scholar 

  11. Akhtar MJ, Ahamed M, Kumar S et al (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 7:845–857. https://doi.org/10.2147/IJN.S29129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi SJ, Choy JH (2014) Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. Int J Nanomedicine 9:261–269. https://doi.org/10.2147/IJN.S57920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma V, Singh P, Pandey AK et al (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res 745:84–91. https://doi.org/10.1016/j.mrgentox.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  14. Cho WS, Kang BC, Lee JK et al (2013) Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9. https://doi.org/10.1186/1743-8977-10-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. https://doi.org/10.1289/ehp.7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu J, Choi SJ (2021) Particle size and biological fate of ZnO do not cause acute toxicity, but affect toxicokinetics and gene expression profiles in the rat livers after oral administration. Int J Mol Sci 22:1698. https://doi.org/10.3390/ijms22041698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu M, Nie G, Meng H et al (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631. https://doi.org/10.1021/ar300031y

    Article  CAS  PubMed  Google Scholar 

  18. Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363. https://doi.org/10.3109/17435390.2010.509519

    Article  CAS  PubMed  Google Scholar 

  19. Cho WS, Duffin R, Howie SE et al (2011) Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27. https://doi.org/10.1186/1743-8977-8-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baek M, Chung HE, Yu J et al (2012) Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine 7:3081–3097. https://doi.org/10.2147/IJN.S32593

    Article  PubMed  PubMed Central  Google Scholar 

  21. Paek HJ, Lee YJ, Chung HE et al (2013) Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale 5:11416–11427. https://doi.org/10.1039/c3nr02140h

    Article  CAS  PubMed  Google Scholar 

  22. Liang C, Fang J, Hu J et al (2022) Toxicokinetics of zinc oxide nanoparticles and food grade bulk-sized zinc oxide in rats after oral dosages. NanoImpact 25:100368. https://doi.org/10.1016/j.impact.2021.100368

    Article  CAS  PubMed  Google Scholar 

  23. Yang P, Hong W, Zhou P et al (2017) Nano and bulk ZnO trigger diverse Zn-transport-related gene transcription in distinct regions of the small intestine in mice after oral exposure. Biochem Biophys Res Commun 493:1364–1369. https://doi.org/10.1016/j.bbrc.2017.09

    Article  CAS  PubMed  Google Scholar 

  24. Amara S, Slama IB, Mrad I et al (2014) Effects of zinc oxide nanoparticles and/or zinc chloride on biochemical parameters and mineral levels in rat liver and kidney. Hum Exp Toxicol 33:1150–1157. https://doi.org/10.1177/0960327113510327

    Article  CAS  PubMed  Google Scholar 

  25. Kim JS, Yoon TJ, Yu KN et al (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347. https://doi.org/10.1093/toxsci/kfj027

    Article  PubMed  Google Scholar 

  26. Wang D, Li H, Liu Z et al (2017) Acute toxicological effects of zinc oxide nanoparticles in mice after intratracheal instillation. Int J Occup Environ Health 23:11–19. https://doi.org/10.1080/10773525.2016.1278510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan Z, Wang W, Wu Y et al (2017) Zinc oxide nanoparticle-induced atherosclerotic alterations in vitro and in vivo. Int J Nanomedicine 12:4433–4442. https://doi.org/10.2147/IJN.S134897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holmes AM, Kempson I, Turnbull T et al (2020) Penetration of zinc into human skin after topical application of nano zinc oxide used in commercial sunscreen formulations. ACS Appl Bio Mater. 3:3640–3647. https://doi.org/10.1021/acsabm.0c00280

    Article  CAS  PubMed  Google Scholar 

  29. Khabir Z, Holmes AM, Lai YJ et al (2021) Human epidermal zinc concentrations after topical application of ZnO nanoparticles in sunscreens. Int J Mol Sci 22:12372. https://doi.org/10.3390/ijms222212372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zvyagin AV, Zhao X, Gierden A et al (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 13:064031. https://doi.org/10.1117/1.3041492

    Article  CAS  PubMed  Google Scholar 

  31. Filipe P, Silva JN, Silva R et al (2009) Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol 22:266–275. https://doi.org/10.1159/000235554

    Article  CAS  PubMed  Google Scholar 

  32. Mohammed YH, Holmes A, Haridass IN et al (2019) Support for the safe use of zinc oxide nanoparticle sunscreens: lack of skin penetration or cellular toxicity after repeated application in volunteers. J Invest Dermatol 139:308–315. https://doi.org/10.1016/j.jid.2018.08.024

    Article  CAS  PubMed  Google Scholar 

  33. Fujihara J, Yasuda T, Takeshita H et al (2018) Association of SNPs in genes encoding zinc transporters on blood zinc levels in humans. Leg Med (Tokyo) 30:28–33. https://doi.org/10.1016/j.legalmed.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  34. Chasapis CT, Ntoupa PA, Spiliopoulou CA et al (2020) Recent aspects of the effects of zinc on human health. Arch Toxicol 94:1443–1460. https://doi.org/10.1007/s00204-020-02702-9

    Article  CAS  PubMed  Google Scholar 

  35. Vysloužil J, Kulich P, Zeman T et al (2020) Subchronic continuous inhalation exposure to zinc oxide nanoparticles induces pulmonary cell response in mice. J Trace Elem Med Biol 61:126511. https://doi.org/10.1016/j.jtemb.2020.126511

    Article  CAS  PubMed  Google Scholar 

  36. Yan X, Rong R, Zhu S et al (2015) Effects of ZnO nanoparticles on dimethoate-induced toxicity in mice. J Agric Food Chem 63:8292–8298. https://doi.org/10.1021/acs.jafc.5b01979

    Article  CAS  PubMed  Google Scholar 

  37. Singh S (2019) Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 29:300–311. https://doi.org/10.1080/15376516.2018.1553221

    Article  CAS  PubMed  Google Scholar 

  38. Deng ZJ, Mortimer G, Schiller T et al (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101. https://doi.org/10.1088/0957-4484/20/45/455101

    Article  CAS  PubMed  Google Scholar 

  39. Shim KH, Hulme J, Maeng EH et al (2014) Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate. Int J Nanomedicine 9:217–224. https://doi.org/10.2147/IJN.S58204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jung EB, Yu J, Choi SJ (2021) Interaction between ZnO nanoparticles and albumin and its effect on cytotoxicity, cellular uptake, intestinal transport, toxicokinetics, and acute oral toxicity. Nanomaterials (Basel) 11:2922. https://doi.org/10.3390/nano11112922

    Article  CAS  PubMed  Google Scholar 

  41. Li CH, Shen CC, Cheng YW et al (2012) Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6:746–756. https://doi.org/10.3109/17435390.2011.620717

    Article  CAS  PubMed  Google Scholar 

  42. Choi J, Kim H, Kim P et al (2015) Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J Toxicol Environ Health A 78:226–243. https://doi.org/10.1080/15287394.2014.949949

    Article  CAS  PubMed  Google Scholar 

  43. Fujihara J, Tongu M, Fujita Y et al (2015) Distribution and toxicity evaluation of ZnO dispersion nanoparticles in single intravenously exposed mice. J Med Invest 62:45–50. https://doi.org/10.2152/jmi.62.45

    Article  PubMed  Google Scholar 

  44. Lin YF, Chiu IJ, Cheng FY et al (2016) The role of hypoxia-inducible factor-1α in zinc oxide nanoparticle-induced nephrotoxicity in vitro and in vivo. Part Fibre Toxicol 13:52. https://doi.org/10.1186/s12989-016-0163-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang L, Wang L, Ding W et al (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. Nanosci Nanotechnol 10:8617–8624. https://doi.org/10.1166/jnn.2010.2483

    Article  CAS  Google Scholar 

  46. Konduru NV, Murdaugh KM, Sotiriou GA et al (2014) Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol 11:44. https://doi.org/10.1186/s12989-014-0044-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen JK, Shih MH, Peir JJ et al (2010) The use of radioactive zinc oxide nanoparticles in determination of their tissue concentrations following intravenous administration in mice. Analyst. 135:1742–1746. https://doi.org/10.1039/c0an00110d

    Article  CAS  PubMed  Google Scholar 

  48. Yeh TK, Chen JK, Lin CH et al (2012) Kinetics and tissue distribution of neutron-activated zinc oxide nanoparticles and zinc nitrate in mice: effects of size and particulate nature. Nanotechnology 23:085102. https://doi.org/10.1088/0957-4484/23/8/085102

    Article  CAS  PubMed  Google Scholar 

  49. Osmond-McLeod MJ, Oytam Y, Kirby JK et al (2014) Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology 8(S1):72–84. https://doi.org/10.3109/17435390.2013.855832

    Article  CAS  PubMed  Google Scholar 

  50. Grüngreiff K, Reinhold D, Wedemeyer H (2016) The role of zinc in liver cirrhosis. Ann Hepatol 15:7–16. https://doi.org/10.5604/16652681.1184191

    Article  CAS  PubMed  Google Scholar 

  51. Cousins RJ (1986) Toward a molecular understanding of zinc metabolism. Clin Physiol Biochem 4:20–30

    CAS  PubMed  Google Scholar 

  52. Takano H, Yanagisawa R, Ichinose T (2002) Lung expression of cytochrome P450 1A1 as a possible biomarker of exposure to diesel exhaust particles. Arch Toxicol 76:146–151. https://doi.org/10.1007/s00204-002-0323-0

    Article  CAS  PubMed  Google Scholar 

  53. Vincent R, Goegan P, Johnson G et al (1997) Regulation of promoter-CAT stress genes in HepG2 cells by suspensions of particles from ambient air. Fundam Appl Toxicol 39:18–32. https://doi.org/10.1006/faat.1997.2336

    Article  CAS  PubMed  Google Scholar 

  54. Maier A, Dalton TP, Puga A (2000) Disruption of dioxin-inducible phase I and phase II gene expression patterns by cadmium, chromium, and arsenic. Mol Carcinog 8:225–235

    Article  Google Scholar 

  55. Elbekai RH, El-Kadi AO (2004) Modulation of aryl hydrocarbon receptor-regulated gene expression by arsenite, cadmium, and chromium. Toxicology 202:249–269. https://doi.org/10.1016/j.tox.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  56. Wang B, Feng W, Wang M et al (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276. https://doi.org/10.1007/s11051-007-9245-3

    Article  CAS  Google Scholar 

  57. Ogunsuyi O, Ogunsuyi O, Akanni O et al (2022) Physiological and histopathological alterations in male Swiss mice after exposure to titanium dioxide (anatase) and zinc oxide nanoparticles and their binary mixture. Drug Chem Toxicol 5:1188–1213. https://doi.org/10.1080/01480545.2020.1811720

    Article  CAS  Google Scholar 

  58. Tongu M, Hashimoto H, Fujihara J et al (2014) Comparison of acute toxicity of ZnO and silica-coated ZnO nanoparticles in mice after single intravenous injection: preliminary experiment to apply to biological imaging. Shimane J Med Sci 31:7–11

    Google Scholar 

  59. Ashajyothi C, Handral HK, Chandrakanth Kelmani R (2018) A comparative in vivo scrutiny of biosynthesized copper and zinc oxide nanoparticles by intraperitoneal and intravenous administration routes in rats. Nanoscale Res Lett 13:93. https://doi.org/10.1186/s11671-018-2497-2

    Article  CAS  Google Scholar 

  60. Jacobsen NR, Stoeger T, van den Brule S et al (2015) Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food Chem Toxicol 85:84–95. https://doi.org/10.1016/j.fct.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  61. Abass MA, Selim SA, Selim AO et al (2017) Effect of orally administered zinc oxide nanoparticles on albino rat thymus and spleen. IUBMB Life 69:528–539. https://doi.org/10.1002/iub.1638

    Article  CAS  PubMed  Google Scholar 

  62. Huang KL, Chang HL, Tsai FM et al (2019) The effect of the inhalation of and topical exposure to zinc oxide nanoparticles on airway inflammation in mice. Toxicol Appl Pharmacol 384:114787. https://doi.org/10.1016/j.taap.2019.114787

    Article  CAS  PubMed  Google Scholar 

  63. Saptarshi SR, Feltis BN, Wright PF et al (2015) Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo. J Nanobiotechnology 13:6. https://doi.org/10.1186/s12951-015-0067-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fujihara J, Tongu M, Fujita Y et al (2015) Pro-inflammatory responses and oxidative stress induced by ZnO nanoparticles in vivo following intravenous injection. Eur Rev Med Pharmacol Sci 19:4920–4926

    CAS  PubMed  Google Scholar 

  65. Esmaeillou M, Moharamnejad M, Hsankhani R et al (2013) Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol 35:67–71. https://doi.org/10.1016/j.etap.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  66. Faddah LM, Abdel Baky NA, Al-Rasheed NM et al (2012) Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats. BMC Complement Altern Med. 12:60. https://doi.org/10.1186/1472-6882-12-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71. https://doi.org/10.2147/NSA.S23932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jachak A, Lai SK, Hida K et al (2012) Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology 6:614–622. https://doi.org/10.3109/17435390.2011.598244

    Article  CAS  PubMed  Google Scholar 

  69. Osmond-Mcleod MJ, McCall MJ (2010) Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4:15–41. https://doi.org/10.3109/17435390903502028

    Article  CAS  Google Scholar 

  70. Fukui H, Horie M, Endoh S et al (2012) Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem Biol Interact 198:29–37. https://doi.org/10.1016/j.cbi.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  71. Spaet TH, Zucker MB (1964) Mechanism of platelet plug formation and role of adenosine diphosphate. Am J Physiol 206:1267–1274. https://doi.org/10.1152/ajplegacy.1964.206.6.1267

    Article  CAS  PubMed  Google Scholar 

  72. Penglis F, Michal F (1969) The induction of blood platelet aggregation by divalent cations. Experientia 25:745–746. https://doi.org/10.1007/BF01897601

    Article  CAS  PubMed  Google Scholar 

  73. Šimundić M, Drašler B, Šuštar V et al (2013) Effect of engineered TiO2 and ZnO nanoparticles on erythrocytes, platelet-rich plasma and giant unilamelar phospholipid vesicles. BMC Veterinary Research 9:7. https://doi.org/10.1186/1746-6148-9-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smijs TG, Bouwstra JA (2010) Focus on skin as a possible port of entry for solid nanoparticles and the toxicological impact. J Biomed Nanotechnol 6:469–484. https://doi.org/10.1166/jbn.2010.1146

    Article  CAS  PubMed  Google Scholar 

  75. Ryu HJ, Seo MY, Jung SK (2014) Zinc oxide nanoparticles: a 90-day repeated-dose dermal toxicity study in rats. Int J Nanomedicine 9(Suppl 2):137–144. https://doi.org/10.2147/IJN.S57930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shim KH, Jeong KH, Bae SO et al (2014) Assessment of ZnO and SiO2 nanoparticle permeability through and toxicity to the blood-brain barrier using Evans blue and TEM. Int J Nanomedicine 9:225–233. https://doi.org/10.2147/IJN.S58205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jo E, Seo G, Kwon JT et al (2013) Exposure to zinc oxide nanoparticles affects reproductive development and biodistribution in offspring rats. J Toxicol Sci 38:525–530. https://doi.org/10.2131/jts.38.525

    Article  CAS  PubMed  Google Scholar 

  78. Hao Y, Liu J, Feng Y et al (2017) Molecular evidence of offspring liver dysfunction after maternal exposure to zinc oxide nanoparticles. Toxicol Appl Pharmacol 329:318–325. https://doi.org/10.1016/j.taap.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  79. **aoli F, Junrong W, Xuan L (2017) Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability. Nanomedicine (Lond) 12:777–795. https://doi.org/10.2217/nnm-2016-0397

    Article  CAS  PubMed  Google Scholar 

  80. Chen B, Hong W, Tang Y et al (2020) Protective effect of the NAC and Sal on zinc oxide nanoparticles-induced reproductive and development toxicity in pregnant mice. Food Chem Toxicol. 143:111552. https://doi.org/10.1016/j.fct.2020.111552

    Article  CAS  PubMed  Google Scholar 

  81. Teng C, Jia J, Wang Z et al (2020) Oral Co-exposures to zinc oxide nanoparticles and CdCl2 induced maternal-fetal pollutant transfer and embryotoxicity by damaging placental barriers. Ecotoxicol Environ Saf 189:109956. https://doi.org/10.1016/j.jhazmat.2020.123563

    Article  CAS  PubMed  Google Scholar 

  82. Larsen ST, Da Silva E, Hansen JS et al (2020) Acute inhalation toxicity after inhalation of ZnO nanoparticles: lung surfactant function inhibition in vitro correlates with reduced tidal volume in mice. Int J Toxicol 39:321–327. https://doi.org/10.1177/1091581820933146

    Article  CAS  PubMed  Google Scholar 

  83. Camaioni A, Massimiani M, Lacconi V et al (2021) Silica encapsulation of ZnO nanoparticles reduces their toxicity for cumulus cell-oocyte-complex expansion. Part Fibre Toxicol 18:33. https://doi.org/10.1186/s12989-021-00424-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. **a T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134. https://doi.org/10.1021/nn800511k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bisht G, Rayamajhi S (2016) ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine (Rij) 3:9. https://doi.org/10.5772/63437

    Article  PubMed  Google Scholar 

  86. Jiang X, He W, Zhang X et al (2018) Light-induced assembly of metal nanoparticles on ZnO enhances the generation of charge carriers, reactive oxygen species, and antibacterial activity. J Phys Chem C 122:29414–29425. https://doi.org/10.1021/acs.jpcc.8b10578

    Article  CAS  Google Scholar 

  87. Li YS, Ootsuyama Y, Kawasaki Y et al (2018) Oxidative DNA damage in the rat lung induced by intratracheal instillation and inhalation of nanoparticles. J Clin Biochem Nutr 62:238–241. https://doi.org/10.3164/jcbn.17-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pei X, Jiang H, Xu G et al (2022) Lethality of zinc oxide nanoparticles surpasses conventional zinc oxide via oxidative stress, mitochondrial damage and calcium overload: a comparative hepatotoxicity study. Int J Mol Sci 23:6724. https://doi.org/10.3390/ijms23126724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sudhakaran S, Athira SS, Mohanan PV (2019) Zinc oxide nanoparticle induced neurotoxic potential upon interaction with primary astrocytes. Neurotoxicology 73:213–227. https://doi.org/10.1016/j.neuro.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  90. Tang HQ, Xu M, Rong Q et al (2016) The effect of ZnO nanoparticles on liver function in rats. Int J Nanomedicine 11:4275–4285. https://doi.org/10.2147/IJN.S109031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nohynek GJ, Lademann J, Ribaud C et al (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277. https://doi.org/10.1080/10408440601177780

    Article  CAS  PubMed  Google Scholar 

  92. Chia SL, Leong DT (2016) Reducing ZnO nanoparticles toxicity through silica coating. Heliyon 2:e00177. https://doi.org/10.1016/j.heliyon.2016.e00177

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018:1062562. https://doi.org/10.1155/2018/1062562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Prasanna APS, Venkataprasanna KS, Pannerselvam B et al (2020) Multifunctional ZnO/SiO 2 core/shell nanoparticles for bioimaging and drug delivery application. J Fluoresc 30:1075–1083. https://doi.org/10.1007/s10895-020-02578-z

    Article  CAS  PubMed  Google Scholar 

  95. **ong HM, Xu Y, Ren QG et al (2008) Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. J Am Chem Soc 130:7522–7523. https://doi.org/10.1021/ja800999u

    Article  CAS  PubMed  Google Scholar 

  96. Alves MM, Andrade SM, Grenho L et al (2019) Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications. Mater Sci Eng C Mater Biol Appl 101:76–87. https://doi.org/10.1016/j.msec.2019.03.084

    Article  CAS  PubMed  Google Scholar 

  97. Zhang ZY, Xu YD, Ma YY et al (2013) Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro. Angew Chem Int Ed 52:4127–4231. https://doi.org/10.1002/anie.201300431

    Article  CAS  Google Scholar 

  98. Wiesmann N, Kluenker M, Demuth P et al (2019) Zinc overload mediated by zinc oxide nanoparticles as innovative anti-tumor agent. Trace Elem Med Biol 51:226–234. https://doi.org/10.1016/j.jtemb.2018.08.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grants-in-Aid for Scientific Research (B) [grant number 21H03212] and Grants-in-Aid for Young Scientists (A) [grant number 26713025] to JF. The authors acknowledge the cooperation of Prof. Y. Fujita, Prof. H. Takeshita, Dr. T. Miki, and Mr. R. Oono.

Funding

This work was supported by JSPS KAKENHI Grants-in-Aid for Scientific Research (B) [grant number 21H03212] and Grants-in-Aid for Young Scientists (A) [grant number 26713025] to JF.

Author information

Authors and Affiliations

Authors

Contributions

JF: Writing – original draft, review and editing, visualization. NN: Writing – review and editing, and visualization.

Corresponding author

Correspondence to Junko Fujihara.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The reference citations and reference list are now updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujihara, J., Nishimoto, N. Review of Zinc Oxide Nanoparticles: Toxicokinetics, Tissue Distribution for Various Exposure Routes, Toxicological Effects, Toxicity Mechanism in Mammals, and an Approach for Toxicity Reduction. Biol Trace Elem Res 202, 9–23 (2024). https://doi.org/10.1007/s12011-023-03644-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03644-w

Keywords

Navigation