Log in

Coenzyme Q10, Biochanin A and Phloretin Attenuate Cr(VI)-Induced Oxidative Stress and DNA Damage by Stimulating Nrf2/HO-1 Pathway in the Experimental Model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Hexavalent chromium [Cr(VI)] has emerged as a prevailing environmental and occupational contaminant over the past few decades. However, the knowledge is sparse regarding Cr(VI)-induced neurological aberrations, and its remediation through natural bioactive compounds has not been fully explored. This study intended to probe the possible invigorative effects of nutraceuticals such as coenzyme Q10 (CoQ10), biochanin A (BCA), and phloretin (PHL) on Cr(VI) intoxicated Swiss albino mice with special emphasis on Nrf2/HO-1/NQO1 gene expressions. Mice received potassium dichromate (75 ppm) through drinking water and were simultaneously co-treated intraperitoneally with CoQ10 (10 mg/kg), BCA, and PHL (50 mg/kg) each for 30-day treatment period. The statistics highlight the elevated levels of lipid peroxidation (LPO) and protein carbonyl content (PCC) with a concomitant reduction in the superoxide dismutase (SOD), glutathione-S-transferase (GST), reduced glutathione (GSH), total thiols (TT), catalase (CAT), and cholinesterase activities in the Cr(VI)-exposed mice. The collateral assessment of DNA fragmentation, DNA breakages, and induced histological alterations was in conformity with the above findings in conjugation with the dysregulation in the Nrf2 and associated downstream HO-1 and NQO1 gene expressions. Co-treatment with the selected natural compounds reversed the above-altered parameters significantly, thereby bringing cellular homeostasis in alleviating the Cr(VI)-induced conciliated impairments. Our study demonstrated that the combination of different bioactive compounds shields the brain better against Cr(VI)-induced neurotoxicity by revoking the oxidative stress-associated manifestations. These compounds may represent a new potential combination therapy due to their ability to modulate the cellular antioxidant responses by upregulating the Nrf2/HO-1/NQO1 signaling pathway against Cr(VI)-exposed population.

Highlights

  • Cr(VI)-associated heavy metal exposure poses a significant threat to the environment, especially to living organisms.

  • Cr(VI) exposure for 30 days resulted in the free radical’s generation that caused neurotoxicity in the Swiss albino mice.

  • Natural compounds such as coenzyme Q10, biochanin A, and phloretin counteracted the neurotoxic effect due to Cr(VI) exposure in scavenging of free radicals by enhancing Nrf2/HO-1/NQO1 gene expressions in maintaining the cellular homeostasis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article. Data will be available on request. Correspondence and requests for materials should be addressed to Gyanendra Singh.

References

  1. Aebi H (1974) Catalase. Academic Press, Methods Of Enzymatic Analysis. https://doi.org/10.1016/B978-0-12-091302-2.50032-3

  2. Aldhahri RS, Alghamdi BS, Alzahrani NA, Bahaidrah KA, Alsufiani HM, Mansouri RA and Ashraf GM (2022) Biochanin A Improves Memory Decline And Brain Pathology In Cuprizone-Induced Mouse Model Of Multiple Sclerosis. Behav Sci (Basel) 12

  3. Atici S, Cinel L, Cinel I, Doruk N, Aktekin M, Akca A, Camdeviren H, Oral U (2004) Opioid Neurotoxicity: Comparison Of Morphine And Tramadol In An Experimental Rat Model. Int J Neurosci 114:1001–1011

    Article  CAS  PubMed  Google Scholar 

  4. Atsdr U (2012) Toxicological Profile For Chromium. Us Department Of Health And Human Services, Public Health Service. https://wwwn.Cdc.Gov/Tsp/Toxprofiles/Toxprofiles.Aspx

  5. Bagchi D, Balmoori J, Bagchi M, Ye X, Williams CB, Stohs SJ (2002) Comparative Effects Of Tcdd, Endrin, Naphthalene And Chromium (Vi) On Oxidative Stress And Tissue Damage In The Liver And Brain Tissues Of Mice. Toxicology 175:73–82

    Article  CAS  PubMed  Google Scholar 

  6. Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity And Oxidative Mechanisms Of Different Forms Of Chromium. Toxicology 180:5–22

    Article  CAS  PubMed  Google Scholar 

  7. Bagchi D, Vuchetich PJ, Bagchi M, Hassoun EA, Tran MX, Tang L, Stohs SJ (1997) Induction Of Oxidative Stress By Chronic Administration Of Sodium Dichromate [Chromium Vi] And Cadmium Chloride [Cadmium Ii] To Rats. Free Radic Biol Med 22:471–478

    Article  CAS  PubMed  Google Scholar 

  8. Bailey MM, Boohaker JG, Jernigan PL, Townsend MB, Sturdivant J, Rasco JF, Vincent JB, Hood RD (2008) Effects Of Pre- And Postnatal Exposure To Chromium Picolinate Or Picolinic Acid On Neurological Development In Cd-1 Mice. Biol Trace Elem Res 124:70–82

    Article  CAS  PubMed  Google Scholar 

  9. Barceloux DG (1999) Chromium. J Toxicol Clin Toxicol 37:173–194

    Article  CAS  PubMed  Google Scholar 

  10. Bosgelmez Ii, Soylemezoglu T, Guvendik G (2008) The Protective And Antidotal Effects Of Taurine On Hexavalent Chromium-Induced Oxidative Stress In Mice Liver Tissue. Biol Trace Elem Res 125:46–58

    Article  CAS  PubMed  Google Scholar 

  11. Buege JA, Aust SD (1978) Microsomal Lipid Peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  12. Chen H, Mu L, Cao J, Mu J, Klerks PL, Luo Y, Guo Z, **e L (2016) Accumulation And Effects Of Cr(Vi) In Japanese Medaka (Oryzias Latipes) During Chronic Dissolved And Dietary Exposures. Aquat Toxicol 176:208–216

    Article  CAS  PubMed  Google Scholar 

  13. Dashti A, Soodi M, Amani N (2016) Cr (Vi) Induced Oxidative Stress And Toxicity In Cultured Cerebellar Granule Neurons At Different Stages Of Development And Protective Effect Of Rosmarinic Acid. Environ Toxicol 31:269–277

    Article  CAS  PubMed  Google Scholar 

  14. Ellman GL (1959) Tissue Sulfhydryl Groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  15. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A New And Rapid Colorimetric Determination Of Acetylcholinesterase Activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  16. Guilhermino L, Soares AM, Carvalho AP, Lopes MC (1998) Correlation Between Whole Blood Cholinesterase Activity And Cerebral Cortex Cholinesterase Activity In Rats Treated With Parathion. Chemosphere 37:1385–1393

    Article  CAS  PubMed  Google Scholar 

  17. Guo M, Lu H, Qin J, Qu S, Wang W, Guo Y, Liao W, Song M, Chen J, Wang Y (2019) Biochanin A Provides Neuroprotection Against Cerebral Ischemia/Reperfusion Injury By Nrf2-Mediated Inhibition Of Oxidative Stress And Inflammation Signaling Pathway In Rats. Med Sci Monit 25:8975–8983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases. The First Enzymatic Step In Mercapturic Acid Formation. J Biol Chem 249:7130–7139

    Article  CAS  PubMed  Google Scholar 

  19. Han B, Li S, Lv Y, Yang D, Li J, Yang Q, Wu P, Lv Z, Zhang Z (2019) Dietary Melatonin Attenuates Chromium-Induced Lung Injury Via Activating The Sirt1/Pgc-1alpha/Nrf2 Pathway. Food Funct 10:5555–5565

    Article  CAS  PubMed  Google Scholar 

  20. Hao P, Zhu Y, Wang S, Wan H, Chen P, Wang Y, Cheng Z, Liu Y, Liu J (2017) Selenium Administration Alleviates Toxicity Of Chromium(Vi) In The Chicken Brain. Biol Trace Elem Res 178:127–135

    Article  CAS  PubMed  Google Scholar 

  21. Hu ML (1994) Measurement Of Protein Thiol Groups And Glutathione In Plasma. Methods Enzymol 233:380–385

    Article  CAS  PubMed  Google Scholar 

  22. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 Represses Nuclear Activation Of Antioxidant Responsive Elements By Nrf2 Through Binding To The Amino-Terminal Neh2 Domain. Genes Dev 13:76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. ** Y, Zhang S, Tao R, Huang J, He X, Qu L, Fu Z (2016) Oral Exposure Of Mice To Cadmium (Ii), Chromium (Vi) And Their Mixture Induce Oxidative- And Endoplasmic Reticulum-Stress Mediated Apoptosis In The Livers. Environ Toxicol 31:693–705

    Article  CAS  PubMed  Google Scholar 

  24. Kadiiska MB, ** Investigation. Chem Res Toxicol 7:800–805

    Article  CAS  PubMed  Google Scholar 

  25. Levine RL, Berlett BS, Moskovitz J, Mosoni L, Stadtman ER (1999) Methionine Residues May Protect Proteins From Critical Oxidative Damage. Mech Ageing Dev 107:323–332

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Yu Z, Han B, Li S, Lv Y, Wang X, Yang Q, Wu P, Liao Y, Qu B, Zhang Z (2022) Activation Of The Gpx4/Tlr4 Signaling Pathway Participates In The Alleviation Of Selenium Yeast On Deltamethrin-Provoked Cerebrum Injury In Quails. Mol Neurobiol 59:2946–2961

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Wu P, Han B, Yang Q, Wang X, Li J, Deng N, Han B, Liao Y, Liu Y, Zhang Z (2022) Deltamethrin Induces Apoptosis In Cerebrum Neurons Of Quail Via Promoting Endoplasmic Reticulum Stress And Mitochondrial Dysfunction. Environ Toxicol 37:2033–2043

    Article  CAS  PubMed  Google Scholar 

  28. Li X, He S, Zhou J, Yu X, Li L, Liu Y, Li W (2021) Cr (Vi) Induces Abnormalities In Glucose And Lipid Metabolism Through Ros/Nrf2 Signaling. Ecotoxicol Environ Saf 219:112320

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Zhang L, Liang J (2015) Activation Of The Nrf2 Defense Pathway Contributes To Neuroprotective Effects Of Phloretin On Oxidative Stress Injury After Cerebral Ischemia/Reperfusion In Rats. J Neurol Sci 351:88–92

    Article  CAS  PubMed  Google Scholar 

  30. Lu J, Jiang H, Liu B, Baiyun R, Li S, Lv Y, Li D, Qiao S, Tan X, Zhang Z (2018) Grape Seed Procyanidin Extract Protects Against Pb-Induced Lung Toxicity By Activating The Ampk/Nrf2/P62 Signaling Axis. Food Chem Toxicol 116:59–69

    Article  CAS  PubMed  Google Scholar 

  31. Mahmoud AM, Abd El-Twab SM (2017) Caffeic Acid Phenethyl Ester Protects The Brain Against Hexavalent Chromium Toxicity By Enhancing Endogenous Antioxidants And Modulating The Jak/Stat Signaling Pathway. Biomed Pharmacother 91:303–311

    Article  CAS  PubMed  Google Scholar 

  32. Majumdar A, Nirwane A, Kamble R (2014) New Evidences Of Neurotoxicity Of Aroclor 1254 In Mice Brain: Potential Of Coenzyme Q10 In Abating The Detrimental Outcomes. Environ Health Toxicol 29:E2014001

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marklund S, Marklund G (1974) Involvement Of The Superoxide Anion Radical In The Autoxidation Of Pyrogallol And A Convenient Assay For Superoxide Dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  34. Mary Momo CM, Ferdinand N, Omer Bebe NK, Alexane Marquise MN, Augustave K, Bertin Narcisse V, Herve T and Joseph T (2019) Oxidative Effects Of Potassium Dichromate On Biochemical, Hematological Characteristics, And Hormonal Levels In Rabbit Doe (Oryctolagus Cuniculus). Vet Sci 6

  35. Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance Of Se-Glutathione Peroxidase, Catalase, And Cu/Zn-Sod For Cell Survival Against Oxidative Stress. Free Radic Biol Med 17:235–248

    Article  CAS  PubMed  Google Scholar 

  36. Nyariki JN, Ochola LA, Jillani NE, Nyamweya NO, Amwayi PE, Yole DS, Azonvide L, Isaac AO (2019) Oral Administration Of Coenzyme Q10 Protects Mice Against Oxidative Stress And Neuro-Inflammation During Experimental Cerebral Malaria. Parasitol Int 71:106–120

    Article  CAS  PubMed  Google Scholar 

  37. O’flaherty EJ, Kerger BD, Hays SM, Paustenbach DJ (2001) A Physiologically Based Model For The Ingestion Of Chromium(Iii) And Chromium(Vi) By Humans. Toxicol Sci 60:196–213

    Article  PubMed  Google Scholar 

  38. Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB (2009) Oxidative Stress, Dna Damage, And Antioxidant Enzyme Activity Induced By Hexavalent Chromium In Sprague-Dawley Rats. Environ Toxicol 24:66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pratush A, Kumar A, Hu Z (2018) Adverse Effect Of Heavy Metals (As, Pb, Hg, And Cr) On Health And Their Bioremediation Strategies: A Review. Int Microbiol 21:97–106

    Article  CAS  PubMed  Google Scholar 

  40. Prince PD, Rodriguez Lanzi C, Fraga CG, Galleano M (2019) Dietary (-)-Epicatechin Affects Nf-Kappab Activation And Nadph Oxidases In The Kidney Cortex Of High-Fructose-Fed Rats. Food Funct 10:26–32

    Article  CAS  PubMed  Google Scholar 

  41. Ray RR (2016) Adverse Hematological Effects Of Hexavalent Chromium: An Overview. Interdiscip Toxicol 9:55–65

    Article  CAS  PubMed  Google Scholar 

  42. Salama A, Hegazy R, Hassan A (2016) Intranasal Chromium Induces Acute Brain And Lung Injuries In Rats: Assessment Of Different Potential Hazardous Effects Of Environmental And Occupational Exposure To Chromium And Introduction Of A Novel Pharmacological And Toxicological Animal Model. PLoS ONE 11:E0168688

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sanchez-Diaz G, Escobar F, Badland H, Arias-Merino G, Posada De La Paz M, and Alonso-Ferreira V (2018) Geographic Analysis Of Motor Neuron Disease Mortality And Heavy Metals Released To Rivers In Spain. Int J Environ Res Public Health 15

  44. Shipkowski KA, Sheth CM, Smith MJ, Hooth MJ, White KL Jr, Germolec DR (2017) Assessment Of Immunotoxicity In Female Fischer 344/N And Sprague Dawley Rats And Female B6c3f1 Mice Exposed To Hexavalent Chromium Via The Drinking Water. J Immunotoxicol 14:215–227

    Article  CAS  PubMed  Google Scholar 

  45. Singh G, Thaker R, Sharma A, Parmar D (2021) Therapeutic Effects Of Biochanin A, Phloretin, And Epigallocatechin-3-Gallate In Reducing Oxidative Stress In Arsenic-Intoxicated Mice. Environ Sci Pollut Res Int 28:20517–20536

    Article  CAS  PubMed  Google Scholar 

  46. Singh NP, Mccoy MT, Tice RR, Schneider EL (1988) A Simple Technique For Quantitation Of Low Levels Of Dna Damage In Individual Cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  47. Singh P, Chowdhuri DK (2017) Environmental Presence Of Hexavalent But Not Trivalent Chromium Causes Neurotoxicity In Exposed Drosophila Melanogaster. Mol Neurobiol 54:3368–3387

    Article  CAS  PubMed  Google Scholar 

  48. Sirvio J, Soininen HS, Kutvonen R, Hyttinen JM, Helkala EL, Riekkinen PJ (1987) Acetyl- And Butyrylcholinesterase Activity In The Cerebrospinal Fluid Of Patients With Parkinson’s Disease. J Neurol Sci 81:273–279

    Article  CAS  PubMed  Google Scholar 

  49. Soudani N, Troudi A, Amara IB, Bouaziz H, Boudawara T, Zeghal N (2012) Ameliorating Effect Of Selenium On Chromium (Vi)-Induced Oxidative Damage In The Brain Of Adult Rats. J Physiol Biochem 68:397–409

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki YJ, Carini M, Butterfield DA (2010) Protein Carbonylation. Antioxid Redox Signal 12:323–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thompson CM, Proctor DM, Haws LC, Hebert CD, Grimes SD, Shertzer HG, Kopec AK, Hixon JG, Zacharewski TR, Harris MA (2011) Investigation Of The Mode Of Action Underlying The Tumorigenic Response Induced In B6c3f1 Mice Exposed Orally To Hexavalent Chromium. Toxicol Sci 123:58–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Travacio M, Polo JM, Llesuy S (2001) Chromium (Vi) Induces Oxidative Stress In The Mouse Brain. Toxicology 162:139–148

    Article  CAS  PubMed  Google Scholar 

  53. Tripathi S, Fhatima S, Parmar D, Singh DP, Mishra S, Mishra R and Singh G (2022) Therapeutic Effects Of Coenzymeq10, Biochanin A And Phloretin Against Arsenic And Chromium Induced Oxidative Stress In Mouse (Mus Musculus) Brain. 3 Biotech 12:1–13

  54. Wang J, He C, Wu WY, Chen F, Wu YY, Li WZ, Chen HQ, Yin YY (2015) Biochanin A Protects Dopaminergic Neurons Against Lipopolysaccharide-Induced Damage And Oxidative Stress In A Rat Model Of Parkinson’s Disease. Pharmacol Biochem Behav 138:96–103

    Article  CAS  PubMed  Google Scholar 

  55. Wang XF, **ng ML, Shen Y, Zhu X, Xu LH (2006) Oral Administration Of Cr(Vi) Induced Oxidative Stress, Dna Damage And Apoptotic Cell Death In Mice. Toxicology 228:16–23

    Article  CAS  PubMed  Google Scholar 

  56. Wise JP Jr, Young JL, Cai J, Cai L (2022) Current Understanding Of Hexavalent Chromium [Cr(Vi)] Neurotoxicity And New Perspectives. Environ Int 158:106877

    Article  CAS  PubMed  Google Scholar 

  57. Witt KL, Stout MD, Herbert RA, Travlos GS, Kissling GE, Collins BJ, Hooth MJ (2013) Mechanistic Insights From The Ntp Studies Of Chromium. Toxicol Pathol 41:326–342

    Article  CAS  PubMed  Google Scholar 

  58. Yang X, Fang Y, Hou J, Wang X, Li J, Li S, Zheng X, Liu Y, Zhang Z (2022) The Heart As A Target For Deltamethrin Toxicity: Inhibition Of Nrf2/Ho-1 Pathway Induces Oxidative Stress And Results In Inflammation And Apoptosis. Chemosphere 300:134479

    Article  CAS  PubMed  Google Scholar 

  59. Yang X, Zhang Y, Xu H, Luo X, Yu J, Liu J, Chang RC (2016) Neuroprotection Of Coenzyme Q10 In Neurodegenerative Diseases. Curr Top Med Chem 16:858–866

    Article  CAS  PubMed  Google Scholar 

  60. Zendehdel R, Shetab-Boushehri SV, Azari MR, Hosseini V, Mohammadi H (2015) Chemometrics Models For Assessment Of Oxidative Stress Risk In Chrome-Electroplating Workers. Drug Chem Toxicol 38:174–179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, ICMR-NIOH Ahmedabad, for providing the necessary infrastructure for conducting this study. The authors acknowledge the help from the Animal House Facility staff in carrying out the study. The authors are also grateful to the Zydus Research Center (ZRC), Ahmedabad, for gifting the Swiss albino mice for the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study objectives. Swapnil Tripathi: investigation, visualization, writing — original draft preparation. Shabrin Fhatima: investigation, visualization; Dharati Parmar: investigation, visualization; Samir Raval: investigation, visualization, resources; Gyanendra Singh: conceptualization, visualization, supervision, writing — reviewing and editing. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gyanendra Singh.

Ethics declarations

Ethics Approval

The present study on animals was conducted as per the compliance with the Institutional Animal Ethics Committee (IAEC) of the ICMR-National Institute of Occupational Health (NIOH), Ahmedabad wide approval no. IAEC/NIOH/2018–19/21/02/M.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S., Parmar, D., Fathima, S. et al. Coenzyme Q10, Biochanin A and Phloretin Attenuate Cr(VI)-Induced Oxidative Stress and DNA Damage by Stimulating Nrf2/HO-1 Pathway in the Experimental Model. Biol Trace Elem Res 201, 2427–2441 (2023). https://doi.org/10.1007/s12011-022-03358-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03358-5

Keywords

Navigation