Log in

Comparative Assessment of Metal Bioaccumulation in Tilapia and Largemouth Bass from Three Dams of the Yaqui River

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present paper, we investigated the accumulation of six metals in tilapia (Oreochromis nilocticus) and largemouth bass (Micropterus salmoides) as indicators of the environmental pollution present at three constructed dams in the Yaqui River basin in Sonora, Mexico. The La Angostura (ANG), El Cajon de Onapa (ECO), and El Oviachic (OVI) dams are ecosystems under different degrees of anthropogenic stress. The collected fishes were dissected to obtain liver, gonad, stomach, gill, and muscle samples to determine the metal concentrations of Fe, Mn, Ni, Cu, Zn, and Cr. The results of a PERMANOVA showed that the concentrations of Fe, Cu, and Zn were significantly higher in tilapia liver, stomach, and gill tissues compared with those of the largemouth bass. Also, differences were detected between seasons, with the metal concentrations during the dry season being significantly higher than those of the rainy season (p < 0.001). The results of a principal component analysis showed an association between metals, tissues, and dams with significantly higher (p < 0.001) concentrations in tilapia from the ECO dam compared with those from the ANG and OVI dams. The general distribution of metals in the tissues was as follows: liver > stomach-gills > gonads > muscle. Variations in metal concentrations may be indicative of the different sources of anthropogenic stress in each ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel-Latif HMR, Abou-Khashaba AM (2017) Subchronic toxicity of Nile tilapia with different exposure routes to Microcystis aeruginosa: Histopathology, liver functions, and oxidative stress biomarkers. Vet World 10:955–963. https://doi.org/10.14202/vetworld.2017.955-963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abreu SN, Pereira E, Valeá C, Duarte AC (2000) Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal). Mar Pollut Bull 40(4):293–297. https://doi.org/10.1016/S0025-326X(99)00187-3

    Article  CAS  Google Scholar 

  3. Alhashmi-Bashir F, Shuhaimi-Othman M, Mazlan AG (2011) Evaluation of trace metal levels in tissues of two commercial fish species in Kapar and Mersing coastal waters, Peninsular Malaysia. J Environ Public Health 2012:352309–352310. https://doi.org/10.1155/2012/352309

    Article  CAS  Google Scholar 

  4. Alquezar R, Markich SJ, Booth DJ (2006) Metal accumulation in a common estuarine fish, Tetractenos glaber, in the Sydney region, Australia. Environ Pollut 142:123–131. https://doi.org/10.1016/j.envpol.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  5. American Fisheries Society (2014) Guidelines for the use of fishes in research, vol 2014. American Fisheries Society, Bethesda, p 104

  6. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E, Ltd., Plymouth

    Google Scholar 

  7. Baptista J, Pato P, Duarte AC, Pardal MA (2013) Organochlorine contaminants in different tissues from Platichthys flesus (Pisces, Pleuronectidea). Chemosphere 93:1632–1638. https://doi.org/10.1016/j.chemosphere.2013.08.028

    Article  CAS  PubMed  Google Scholar 

  8. Bawuro AA, Voegborlo RB, Adimado AA (2018) Bioaccumulation of heavy metals in some tissues of fish in Lake Geriyo, Adamawa State, Nigeria. J Environ Public Health 2018:1854892–1854897. https://doi.org/10.1155/2018/1854892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beveridge M, Baird DJ (2000) Diet, feeding and digestive physiology. In: Beveridge M (ed) Tilapias: biology and exploitation, 1st edn. University of Stirling, Stirling, pp 59–87

    Chapter  Google Scholar 

  10. Da Silva EF, Zhang C, Pinto LSS, Patinha C, Reis P (2004) Hazard assessment on arsenic and lead in soils of Castromil gold mining area, Portugal. Appl Geochem 19:887–898. https://doi.org/10.1016/j.apgeochem.2003.10.010

    Article  CAS  Google Scholar 

  11. Davis DA, Gatlin DM (1996) Dietary mineral requirements of fish and marine crustaceans. Rev Fish Sci 4:75–99. https://doi.org/10.1080/10641269609388579

    Article  Google Scholar 

  12. De Boeck G, Huong-Ngo TT, Campenhout KV, Blust R (2003) Differential metallothionein induction patterns in three freshwater fish during sublethal copper exposure. Aquat Toxicol 65:413–424. https://doi.org/10.1016/s0166-445x(03)00178-4

    Article  PubMed  Google Scholar 

  13. De la O-Villanueva M, Meza-Figueroa D, Maier RM, Moreno D, Gómez-Alvarez A, Del Río-Salas R, Mendívil H, Montijo A (2013) Erosive processes in the Presa I mine dam at Nacozari de Garcia, Sonora, and their effect in the dispersion of pollutants. Bol Soc Geol Mex 65:27–38

    Article  Google Scholar 

  14. Dwivedi AC, Tiwari A, Mayank P (2015) Seasonal determination of heavy metals in muscle, gill and liver tissues of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) from the from the tributary of the Ganga River, India. Zool Ecol 25(2):166–171. https://doi.org/10.1080/21658005.2015.1020012

    Article  Google Scholar 

  15. Ezemonye LI, Princewill O, Adebayo AA, Tongo EI, Ogbomida E (2018) Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicol Rep 6:1–9. https://doi.org/10.1016/j.toxrep.2018.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fashola MO, Ngole-Jeme VM, Babalola OO (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13(11):1047. https://doi.org/10.3390/ijerph13111047

    Article  CAS  PubMed Central  Google Scholar 

  17. Feng C, Wang H, Lu N, Chen T, He H, Lu Y, Tu XM (2014) Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry 26(2):105–109. https://doi.org/10.3969/j.issn.1002-0829.2014.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gortáres-Moroyoqui P, Castro-Espinosa L, Naranjo JE, Karpiscak MM, Freitas RJ, Gerba CP (2011) Microbiological water quality in a large irrigation system: El Valle del Yaqui, Sonora México. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1708–1712. https://doi.org/10.1080/10934529.2011.623968

    Article  CAS  PubMed  Google Scholar 

  19. Gorur FK, Keser R, Akcay N, Dizman S (2012) Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere 87:356–361. https://doi.org/10.1016/j.chemosphere.2011.12.022

    Article  CAS  Google Scholar 

  20. Has-Schön E, Bogut I, Kralik G, Bogut S, Horvatić J, Čačić I (2008) Heavy metal concentration in fish tissues inhabiting waters of “Buško Blato” reservoar (Bosnia and Herzegovina). Environ Monit Assess 144:15–22. https://doi.org/10.1007/s10661-007-9627-0

    Article  CAS  PubMed  Google Scholar 

  21. Hendrickson DA, Minckley WL, Miller RR, Siebart DJ, Haddock Minckley P (1980) Fishes of the Rio Yaqui Basin, Mexico and United States. J Ariz Nev Acad Sci 15:65–106

    Google Scholar 

  22. Hosseini M, Nabavi SM, Nabavi SN, Pour NA (2015) Heavy metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: risk assessment for the consumers. Environ Monit Assess 187:237. https://doi.org/10.1007/s10661-015-4464-z

    Article  CAS  PubMed  Google Scholar 

  23. INEGI (2018) Anuario estadístico y geográfico de Sonora 2018. Instituto Nacional de Estadística y Geografía, p 639

  24. Jackson BP, Shaw-Allen PL, Hopkins WA, Bertsch PM (2002) Trace element speciation in largemouth bass (Micropterus salmoides) from a fly ash settling basin by liquid chromatography-ICP-MS. Anal Bioanal Chem 374:203–211. https://doi.org/10.1007/s00216-002-1337-4

    Article  CAS  PubMed  Google Scholar 

  25. Jara-Marini ME, Soto-Jimenez MF, Páez-Osuna F (2009) Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California. Chemosphere 77:1366–1373. https://doi.org/10.1016/j.chemosphere.2009.09.025

    Article  CAS  PubMed  Google Scholar 

  26. Klaassen CD, Lehman-Mckeeman LD (1989) Induction of metallothionein. J Am Coll Toxicol 8:1315–1321

    Article  Google Scholar 

  27. Kružíková K, Kenšová R, Sedláčková L, Jarkovský J, Poleszczuk G, Svobodová Z (2013) The correlation between fish mercury liver/muscle ratio and high and low levels of mercury contamination in Czech localities. Int J Electrochem Sci 8:45–56

    Google Scholar 

  28. Leung HM, Leung AO, Wang HS, Ma KK, Liang Y, Ho KC, Cheung KC, Tohidi F, Yung KKL (2014) Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China. Mar Pollut Bull 78:235–245. https://doi.org/10.1016/j.marpolbul.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  29. Luo Y, Shan D, Zhong H, Zhou Y, Chen W, Cao J, Guo Z, **ao J, He F, Huang Y, Li J, Huang H, Xu P (2015) Subchronic effects of cadmium on the gonads, expressions of steroid hormones and sex-related genes in tilapia Oreochromis niloticus. Ecotoxicology 24:2213–2223. https://doi.org/10.1007/s10646-015-1542-5

    Article  CAS  PubMed  Google Scholar 

  30. Mackay D, Celsie AKD, Powell DE, Parnis JM (2018) Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective. Environ Sci Process Impacts 20:72–85. https://doi.org/10.1039/c7em00485k

    Article  CAS  PubMed  Google Scholar 

  31. Mahboob-Shazia S, Kauzar S, Jabeen F, Sultana S, Al-Ghanim KA, Hussain B, Al-Misned F, Ahmed Z (2016) Effect of Heavy Metals on Liver, Kidney, Gills and Muscles of Cyprinus carpio and Wallago attu inhabited in the Indus. Braz Arch Biol Technol 59:1–10. https://doi.org/10.1590/1678-4324-2016150275

    Article  CAS  Google Scholar 

  32. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, London

    Google Scholar 

  33. Marsalek P, Svobodová Z, Randák T, Vehl J (2005) Mercury and methylmercury contamination of fish from the Skalka Reservoir: A case study. Acta Vet Brno 74:427–434

  34. McCullough EB, Matson PA (2016) Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico. PNAS 113:4609–4614. https://doi.org/10.1073/pnas.1011602108/-/DCSupplemental

    Article  CAS  PubMed  Google Scholar 

  35. Meza-Figueroa D, Maier RM, de la O-Villanueva M, Gómez-Alvarez A, Moreno-Zazueta A, Rivera J, Campillo A, Grandlic CJ, Anaya R, Palafox-Reyes J (2009) The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere 77:140–147. https://doi.org/10.1016/j.chemosphere.2009.04.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meza-Montenegro MM, Gandolfi AJ, Santana-Alcantar ME, Klimecki WT, Aguilar-Apodaca MG, Del Río-Salas R, De la O-Villanueva M, Gómez-Alvarez A, Mendivil-Quijada H, Valencia M, Meza-Figueroa D (2012) Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. Sci Total Environ 433:472–481. https://doi.org/10.1016/j.scitotenv.2012.06.083

    Article  CAS  PubMed  Google Scholar 

  37. Naylor RL, Falcon WP, Puente-González A (2001) Policy reforms and Mexican agriculture: views from the Yaqui Valley. CIMMYT, Mexico

    Google Scholar 

  38. Oberholster PJ, Myburgh JG, Aston PJ, Coetzee JJ, Botha AM (2012) Bioaccumulation of aluminum and iron in the food chain of Lake Loskop, South Africa. Ecotoxicol Environ Saf 75:134–141. https://doi.org/10.1016/j.ecoenv.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  39. Ochoa-Landín L, Pérez-Segura E, Del Río-Salas R, Valencia-Moreno M (2011) Depósitos minerales de Sonora, México. In: Thierry C (ed) Panorama de la geología de Sonora, México. Universidad Nacional Autónoma de México, Mexico, pp 299–331

    Google Scholar 

  40. Pathiratne A, Chandrasekera LW, Pathiratne KA (2009) Use of biomarkers in Nile tilapia (Oreochromis niloticus) to assess the impacts of pollution in Bolgoda Lake, an urban water body in Sri Lanka. Environ Monit Assess 156:361–375. https://doi.org/10.1007/s10661-008-0490-4

    Article  CAS  PubMed  Google Scholar 

  41. Phinney JT, Bruland KW (2009) Trace metal exchange in solution by the fungicides Ziram and Maneb (dithiocarbamates) and subsequent uptake of lipophilic organic zinc, copper and lead complexes into phytoplankton cells. Environ Toxicol Chem 16:2046–2053. https://doi.org/10.1002/etc.5620161009

  42. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

    Google Scholar 

  43. Rajkowska M, Protasowicki M (2013) Distribution of metals (Fe, Mn, Zn, Cu) in fish tissues in two lakes of different trophy in Northwestern Poland. Environ Monit Assess 185:3493–3502. https://doi.org/10.1007/s10661-012-2805-8

    Article  CAS  PubMed  Google Scholar 

  44. Segner H, Baumann L (2015) What constitutes a model organism in ecotoxicology? Integr Environ Assess Manag 12:195–205. https://doi.org/10.1002/ieam.1727

    Article  Google Scholar 

  45. SGM (2015) Servicio Geológico Mexicano. Cartas Geológicas del Estado de Sonora, https://www.sgm.gob.mx/CartasDisponibles/. Accessed 23 October 2019

  46. Siscar R, Koenig S, Torreblanca A, Solé M (2014) The role of metallothionein and selenium in metal detoxification in the liver of deep-sea fish from the NW Mediterranean Sea. Sci Total Environ 466–467:898–905. https://doi.org/10.1016/j.scitotenv.2013.07.081

    Article  CAS  PubMed  Google Scholar 

  47. Subotic S, Spasić S, Višnjić-Jeftić Z, Hegediš A, Krpo-Ćetković J, Mićković B, Skorić S, Lenhardt M (2013) Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River (Serbia). Ecotoxicol Environ Saf. 98:196–202. https://doi.org/10.1016/j.ecoenv.2013.08.020

  48. Taylor SR, Mclennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265. https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

  49. Taylor GC, Weyl OLF, Cowley PD, Allen MS (2015) Dispersal and mortality of Micropterus salmoides associated with catch and release tournament angling in a South African reservoir. Fish Res 162:37–42. https://doi.org/10.1016/j.fishres.2014.09.014

    Article  Google Scholar 

  50. Tessier A, Rapin F, Carignan R (1985) Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim Cosmochim Acta 49:183–194

    Article  CAS  Google Scholar 

  51. Vallejo Toro PP, Vásquez Bedoya LF, Correa ID, Bernal GR, Alcántara-Carrió FJ, Palacio Baena JA (2016) Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia. Mar Pollut Bull 111:311–320. https://doi.org/10.1016/j.marpolbul.2016.06.093

    Article  CAS  PubMed  Google Scholar 

  52. Vega-Granillo R, Vazquez-Armenta VH, Orozco-Garza A (2011) Structural analysis of the La Colorada Mine, Sonora, Mexico. Rev Mex Cienc Geol 32:239–253

    Google Scholar 

  53. Von Der Heyden BP, Hauser EJ, Mishra B, Martinez GA, Bowie AR, Tyliszczak T, Mtshali TN, Roychoudhury AN, Myneni SCB (2014) Ubiquitous presence of Fe(II) in aquatic colloids and its association with organic carbon. Environ Sci Technol Lett 1:387–392. https://doi.org/10.1021/ez500164v

    Article  CAS  Google Scholar 

  54. Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151:185–207

    Article  CAS  Google Scholar 

  55. Weaver J, Wilson WH, Biegalski SRF, O’Kelly DJ (2009) Evaluation of heavy metal uptake in Micropterus salmoides (Largemouth Bass) of Lake Austin, TX by neutron activation analysis. J Radioanal Nucl Chem 282:443–447. https://doi.org/10.1007/s10967-009-0345-7

    Article  CAS  Google Scholar 

  56. Westneat MW, Olsen AM (2015) How fish power suction feeding. PNAS 112:8525–8526. https://doi.org/10.1073/pnas.1510522112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yi YW, Wang Z, Zhang K, Yu G, Duan X (2008) Sediment pollution and its effect on fish through food chain in the Yangtze River. Int J Sediment Res 23:338–347. https://doi.org/10.1016/s1001-6279(09)60005-6

    Article  Google Scholar 

  58. Zoccal-Garcia DA, Augusto-Cota AD, Alves-Leme GL, Luis-Orsi M (2014) Biology of black bass Micropterus salmoides (Lacepède, 1802) fifty years after the introduction in a small drainage of the Upper Paraná River basin, Brazil. Biodiversitas 15:180–185

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Isabel Ramírez-Hernández, Jorge Cervantes-García, Adolfo Americano, Nicolas Lara-Vázquez, Rodrigo Campa-Molina, and Crisóforo Olaje-Murrieta for their help with fish collection. The authors also thank to Roberto Ochoa-Contreras and Manuel Lastra-Encinas for their technical support with sample processing and preparation. The authors thanks to Dr. Andrea Lievana MacTavish for the English edition of manuscript. This study was supported by the Centro de Investigación en Alimentación y Desarrollo, A.C [project number 10368]. Martinez-Durazo was supported by a scholarship from Consejo Nacional de Ciencia y Tecnología, México.

Availability of Data and Material

As supplementary data, authors provide the tables of metal concentrations in tilapia and largemouth bass tissues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Enrique Jara-Marini.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Durazo, Á., Cruz-Acevedo, E., Betancourt-Lozano, M. et al. Comparative Assessment of Metal Bioaccumulation in Tilapia and Largemouth Bass from Three Dams of the Yaqui River. Biol Trace Elem Res 199, 3112–3125 (2021). https://doi.org/10.1007/s12011-020-02425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02425-z

Keywords

Navigation