Log in

Unravelling Post-harvest Ripening Metabolomics of a New White Variety Guava Fruit (Cv Arka Mridula) with Special Emphasis on Phenolics and Corresponding Antioxidants

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The phenolic, antioxidant and metabolic profiling of a new white variety guava fruit Arka Mridula (AM) was performed during its storage at the room temperature (28 ± 2 °C). The comparative profiles were generated at three ripening stages (pre-ripe, ripe and over-ripe) of the fruit. Generally, a steady decrease of the phenolic and antioxidant content from the pre-ripe to the ripe stage and a subsequent increase from the ripe to over-ripe stage was observed. Further, a powerful correlation between the phenolic content and antioxidant principles was noted through the principal component analysis. We could identify 53  compounds for the hydro-methanolic fruit extract through LC and GC-MS aided metabolic analysis, and the identified compounds were dominated by phenolics (~ 44%). The statistical analysis revealed that phytochemicals catechin, myricitrin, myricetin, kaempferol glycosides and n-hexadecanoic acid contributed significantly towards the ripening process of AM, during the storage. The present study is expected to provide important insight into the ripening biochemistry of AM. Subsequently, it may help in the future development of metabolically stable guava cultivars with extended post-harvest shelf life.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are available on request.

References

  1. Takeda, L. N., Laurindo, L. F., Guiguer, E. L., Bishayee, A., Araújo, A. C., Ubeda, L. C. C., & Barbalho, S. M. (2023). Psidium guajava L.: A systematic review of the Multifaceted Health benefits and economic importance. Food Reviews International, 39(7), 4333–4363. https://doi.org/10.1080/87559129.2021.2023819

  2. Naseer, S., Hussain, S., Naeem, N., Pervaiz, M., & Rahman, M. (2018). The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience, 4(1), 1–8. https://doi.org/10.1186/s40816-018-0093-8

    Article  CAS  Google Scholar 

  3. Nwinyi, O. C., Chinedu, S. N., & Ajani, O. O. (2008). Evaluation of antibacterial activity of Pisidium guajava and Gongronema latifolium. Journal of Medicinal Plants Research, 2(8), 189–192.

    Google Scholar 

  4. Zheng, B., Zhao, Q., Wu, H., Wang, S., & Zou, M. (2020). A comparative metabolomics analysis of guava (Psidium guajava L.) fruit with different colors. ACS Food Science & Technology, 1(1), 96–106.

    Article  Google Scholar 

  5. Suwanwong, Y., & Boonpangrak, S. (2021). Phytochemical contents, antioxidant activity, and anticancer activity of three common guava cultivars in Thailand. European Journal of Integrative Medicine, 42, 101290. https://doi.org/10.1016/j.eujim.2021.101290

    Article  Google Scholar 

  6. Danielski, R., Mazzutti, S., Ferreira, S. R. S., Vitali, L., & Block, J. M. (2022). A non-conventional approach for obtaining phenolic antioxidants from red guava (Psidium guajava L.) by-products. Journal of Food Processing and Preservation, 46(6), e16502. https://doi.org/10.1111/jfpp.16502

    Article  CAS  Google Scholar 

  7. Nguyen, Q. V., Doan, M. D., Thi, B., Nguyen, B. H., Minh, M. T. T., Nguyen, D., & Tran, A. D., V.-C (2022). The effect of drying methods on chlorophyll, polyphenol, flavonoids, phenolic compounds contents, color and sensory properties, and in vitro antioxidant and anti-diabetic activities of dried wild guava leaves. Drying Technology, 1–12. https://doi.org/10.1080/07373937.2022.2145305

  8. Musa, K. H., Abdullah, A., Jusoh, K., & Subramaniam, V. (2011). Antioxidant activity of pink-flesh guava (Psidium guajava L.): Effect of extraction techniques and solvents. Food Analytical Methods, 4, 100–107. https://doi.org/10.1007/s12161-010-9139-3

    Article  Google Scholar 

  9. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of food Composition and Analysis, 19(6–7), 669–675. https://doi.org/10.1016/j.jfca.2006.01.003

    Article  CAS  Google Scholar 

  10. Gull, J., Sultana, B., Anwar, F., Naseer, R., Ashraf, M., & Ashrafuzzaman, M. (2012). Variation in antioxidant attributes at three ripening stages of guava (Psidium guajava L.) fruit from different geographical regions of Pakistan. Molecules, 17(3), 3165–3180. https://doi.org/10.3390/molecules17033165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. El-Ahmady, S. H., Ashour, M. L., & Wink, M. (2013). Chemical composition and anti-inflammatory activity of the essential oils of Psidium guajava fruits and leaves. Journal of Essential Oil Research, 25(6), 475–481. https://doi.org/10.1080/10412905.2013.796498

    Article  CAS  Google Scholar 

  12. Hashemi, S. M. B., & Jafarpour, D. (2023). Lactic acid fermentation of guava juice: Evaluation of nutritional and bioactive properties, enzyme (α-amylase, α‐glucosidase, and angiotensin‐converting enzyme) inhibition abilities, and anti‐inflammatory activities. Food Science & Nutrition, 11(12), 7638–7648. https://doi.org/10.1002/fsn3.3683

    Article  CAS  Google Scholar 

  13. Polinati, R. M., Teodoro, A. J., Correa, M. G., Casanova, F. A., Passos, C. L. A., Silva, J. L., & Fialho, E. (2022). Effects of lycopene from guava (Psidium guajava L.) derived products on breast cancer cells. Natural Product Research, 36(5), 1405–1408. https://doi.org/10.1080/14786419.2021.1880402

    Article  CAS  PubMed  Google Scholar 

  14. Lok, B., Babu, D., Tabana, Y., Dahham, S. S., Adam, M. A. A., Barakat, K., & Sandai, D. (2023). The Anticancer potential of Psidium guajava (Guava) extracts. Life, 13(2), 346.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. YEN, G. O. C., & YANG, P. A. (1992). Changes in volatile flavor components of guava puree during processing and frozen storage. Journal of food Science, 57(3), 679–681. https://doi.org/10.1111/j.1365-2621.1992.tb08070.x

    Article  CAS  Google Scholar 

  16. Okpashi, V. E., Ucho, K. M., Oyo-Ita, E. E. A., & Jones, B. B. (2023). Effect of white guava (Psidium guajava L.) fruit puree in rats injected with 2, 4, 5, 6 (1H, 3H)-Pyrimidinetetrone: Treatment of diabetic mellitas by extract of white guava fruit puree. Biological Sciences-PJSIR, 66(3), 268–273.

    Google Scholar 

  17. Oboh, G., Ademosun, A. O., Akinleye, M., Omojokun, O. S., Boligon, A. A., & Athayde, M. L. (2015). Starch composition, glycemic indices, phenolic constituents, and antioxidative and antidiabetic properties of some common tropical fruits. Journal of Ethnic Foods, 2(2), 64–73. https://doi.org/10.1016/j.jef.2015.05.003

    Article  Google Scholar 

  18. Pereira, G. A., Chaves, D. S. de A., Silva, T. M. e, Motta, R. E. de A., Silva, A. B. R. da, Patricio, T. C. da C., & Cid, Y. P. (2023). Antimicrobial activity of Psidium guajava aqueous extract against sensitive and resistant bacterial strains. Microorganisms, 11(7), 1784.

  19. Shady, N. H., Abdullah, H. S., Maher, S. A., Albohy, A., Elrehany, M. A., Mokhtar, F. A., & Abdelmohsen, U. R. (2022). Antiulcer potential of psidium guajava seed extract supported by metabolic profiling and molecular docking. Antioxidants, 11(7), 1230.

  20. Bontempo, P., Doto, A., Miceli, M., Mita, L., Benedetti, R., Nebbioso, A., & Sica, V. (2012). Psidium guajava L. anti-neoplastic effects: induction of apoptosis and cell differentiation. Cell proliferation, 45(1), 22–31. https://doi.org/10.1111/j.1365-2184.2011.00797.x

  21. Prakoso, N. I., & Nita, M. T. (2023). Exploring anticancer activity of the Indonesian guava leaf (Psidium guajava L.) fraction on various human cancer cell lines in an in vitro cell-based approach. Open Chemistry, 21(1), 20230101. https://doi.org/10.1515/chem-2023-0101

    Article  CAS  Google Scholar 

  22. Pech, J. C., Bouzayen, M., & Latché, A. (2008). Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science, 175(1–2), 114–120. https://doi.org/10.1016/j.plantsci.2008.01.003

    Article  CAS  Google Scholar 

  23. Jha, S. N., Jaiswal, P., Narsaiah, K., Kaur, P. P., Singh, A. K., & Kumar, R. (2013). Textural properties of mango cultivars during ripening. Journal of food Science and Technology, 50(6), 1047–1057.

    Article  CAS  PubMed  Google Scholar 

  24. Yadav, A., Kumar, N., Upadhyay, A., Fawole, O. A., Mahawar, M. K., Jalgaonkar, K., & Kumar, M. (2022). Recent advances in novel packaging technologies for shelf-life extension of guava fruits for retaining health benefits for longer duration. Plants, 11(4), 1–28. https://doi.org/10.3390/plants11040547

  25. Alba-Jiménez, J. E., Benito-Bautista, P., Nava, G. M., Rivera-Pastrana, D. M., Vázquez-Barrios, M. E., & Mercado-Silva, E. M. (2018). Chilling injury is associated with changes in microsomal membrane lipids in guava fruit (Psidium guajava L.) and the use of controlled atmospheres reduce these effects. Scientia Horticulturae, 240, 94–101. https://doi.org/10.1016/j.scienta.2018.05.026

    Article  CAS  Google Scholar 

  26. Taher, M. A., Lo’ay, A. A., Gouda, M., Limam, S. A., Abdelkader, M. F., Osman, S. O., & Khalil, H. A. (2022). Impacts of gum arabic and Polyvinylpyrrolidone (PVP) with salicylic acid on peach fruit (Prunus persica) Shelf Life. Molecules, 27(8), 2595. https://doi.org/10.3390/molecules27082595

  27. Zahra, R., Yasmin, Z., Ishfaq, B., Babu, I., & Ahmad, W. (2022). Shelf life extension of Psidium guajava l. at ambient storage via antioxidant application. Journal of Agricultural Research, 60(2), 161–166.

    Google Scholar 

  28. Sachin, A. J., Rao, D. V. S., Ravishankar, K., Ranjitha, K., Vasugi, C., Narayana, C. K., & Reddy, S. V. R. (2022). 1-MCP treatment modulated physiological, biochemical and gene expression activities of guava during low-temperature storage. Acta Physiologiae Plantarum, 44(12), 125. https://doi.org/10.1007/s11738-022-03463-x

    Article  CAS  Google Scholar 

  29. Sachin, A. J., Sudhakar Rao, D. V., Ranjitha, K., Vasugi, C., Narayana, C. K., Reddy, S. V. R., & Preethi, P. (2023). Differential efficacy of postharvest application of ethylene inhibitors on storage life and nutritional quality of guava (cv. ‘Arka Mridula’). Erwerbs-Obstbau, 1–13. https://doi.org/10.1007/s10341-023-00966-w

  30. Vahala, J., Ruonala, R., Keinänen, M., Tuominen, H., & Kangasjärvi, J. (2003). Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiology, 132(1), 185–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boukerche, S., Ouali, A., & Ouali, K. (2023). Effect of contaminated diet with a plant growth regulator 1-methylcyclopropene on the hematological parameters and liver function of albino Wistar rats. Comparative Clinical Pathology. https://doi.org/10.1007/s00580-023-03518-6

    Article  Google Scholar 

  32. Patthamakanokporn, O., Puwastien, P., Nitithamyong, A., & Sirichakwal, P. P. (2008). Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. Journal of food Composition and Analysis, 21(3), 241–248. https://doi.org/10.1016/j.jfca.2007.10.002

    Article  CAS  Google Scholar 

  33. Singh, A., Panwar, N. R., Meghwal, P. R., Khapte, P. S., & Berwal, M. K. (2019). Bioactive compositions in guava (Psidium guajava) at different stages of maturation in arid conditions. Indian Journal of Agricultural Sciences, 89(11), 1797–1801.

    Article  CAS  Google Scholar 

  34. Pérez-Patricio, M., Camas-Anzueto, J. L., Sanchez-Alegría, A., Aguilar-González, A., Gutiérrez-Miceli, F., Escobar-Gómez, E., & Grajales-Coutiño, R. (2018). Optical method for estimating the chlorophyll contents in plant leaves. Sensors, 18(2), 650.

  35. Rodríguez-Moreno, V. M., Padilla-Ramírez, J. S., Medina-García, G., & Reyes-González, A. (2022). Combined radiometric analysis related to guava leaf phenology in response to soil application of paclobutrazol (PBZ). International Journal of Geosciences, 13(8), 681–694.

    Article  ADS  Google Scholar 

  36. Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106(1), 135–141. https://doi.org/10.1034/j.1399-3054.1999.106119.x

    Article  CAS  Google Scholar 

  37. Nag, A., Bandyopadhyay, M., & Mukherjee, A. (2013). Antioxidant activities and cytotoxicity of Zingiber zerumbet (L.) Smith rhizome. Journal of Pharmacognosy and Phytochemistry, 2(3), 102–108.

    CAS  Google Scholar 

  38. Nag, A., Banerjee, R., Goswami, P., Bandyopadhyay, M., & Mukherjee, A. (2021). Antioxidant and antigenotoxic properties of Alpinia galanga, Curcuma amada, and Curcuma Caesia. Asian Pacific Journal of Tropical Biomedicine, 11(8), 363.

    Article  CAS  Google Scholar 

  39. Ayoub, I. M., Korinek, M., El-Shazly, M., Wetterauer, B., El-Beshbishy, H. A., Hwang, T.-L., & Youssef, F. S. (2021). Anti-Allergic, anti-inflammatory, and anti-hyperglycemic activity of chasmanthe aethiopica leaf extract and its profiling using LC/MS and GLC/MS. Plants, 10(6), 1118. https://doi.org/10.3390/plants10061118

  40. Smith, E., Lewis, A., Narine, S. S., & Emery, R. N. (2023). Unlocking potentially therapeutic phytochemicals in Capadulla (Doliocarpus Dentatus) from Guyana using untargeted mass spectrometry-based metabolomics. Metabolites, 13(10), 1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roy, A. C., Prasad, A., & Ghosh, I. (2023). Phytochemical profiling of tupistra nutans wall. Ex Lindl. Inflorescence extract and evaluation of its antioxidant activity and toxicity in hepatocarcinoma (HepG2) and fibroblast (F111) cells. Applied Biochemistry and Biotechnology, 195(1), 172–195. https://doi.org/10.1007/s12010-022-04145-7

    Article  CAS  PubMed  Google Scholar 

  42. Dey, S., Kundu, R., Gopal, G., Mukherjee, A., Nag, A., & Paul, S. (2019). Enhancement of nitrogen assimilation and photosynthetic efficiency by novel iron pulsing technique in Oryza sativa L. var Pankaj. Plant Physiology and Biochemistry, 144, 207–221. https://doi.org/10.1016/j.plaphy.2019.09.037

    Article  CAS  PubMed  Google Scholar 

  43. Dey, S., Paul, S., Nag, A., Banerjee, R., Gopal, G., Mukherjee, A., & Kundu, R. (2021). Iron-pulsing, a novel seed invigoration technique to enhance crop yield in rice: A journey from lab to field aiming towards sustainable agriculture. Science of the Total Environment, 769, 1–16. https://doi.org/10.1016/j.scitotenv.2020.144671

    Article  CAS  Google Scholar 

  44. Kumari, M., Singh, R., & Subbarao, N. (2021). Exploring the interaction mechanism between potential inhibitor and multi-target mur enzymes of mycobacterium tuberculosis using molecular docking, molecular dynamics simulation, principal component analysis, free energy landscape, dynamic cross-correlation matrices, vector movements, and binding free energy calculation. Journal of Biomolecular Structure and Dynamics, 40(24), 1–30. https://doi.org/10.1080/07391102.2021.1989040

    Article  CAS  Google Scholar 

  45. Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374(2065), 1–16. https://doi.org/10.1098/rsta.2015.0202

    Article  MathSciNet  Google Scholar 

  46. Lever, J., Krzywinski, M., & Altman, N. (2017). Points of significance: Principal component analysis. Nature Methods, 14(7), 641–643.

    Article  CAS  Google Scholar 

  47. Marcelin, O., Williams, P., & Brillouet, J. M. (1993). Isolation and characterisation of the two main cell-wall types from guava (Psidium guajava L.) pulp. Carbohydrate Research, 240, 233–243.

    Article  CAS  Google Scholar 

  48. Tessmer, M. A., Besada, C., Hernando, I., Appezzato-da-Glória, B., Quiles, A., & Salvador, A. (2016). Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biology and Technology, 120, 52–60.

    Article  CAS  Google Scholar 

  49. Wang, H., Wang, J., Mujumdar, A. S., **, X., Liu, Z. L., Zhang, Y., & **ao, H. W. (2021). Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa). Food Hydrocolloids, 118, 106808.

    Article  CAS  Google Scholar 

  50. Majeed, s, Zafar, M., Ahmad, M., Zafar, s, Ayoub, A., & Raza, J. (2022). Morpho-palynological and anatomical studies in desert cacti (Opuntia dillenii and Opuntia monacantha) using light and scanning electron microscopy. Microscopy Research and Technique, 85(8), 2801–2812. https://doi.org/10.1002/jemt.24129

    Article  PubMed  Google Scholar 

  51. Forycka, A., & Morozowska, M. (2020). Micromorphology and anatomy of fruits of L.() and their intraspecific differentiation. Herba Polonica, 66(4), 1–13. https://doi.org/10.2478/hepo-2020-0018

    Article  Google Scholar 

  52. Kaur, R., Kaur, N., & Singh, H. (2019). Pericarp and pedicel anatomy in relation to fruit cracking in lemon (Citrus limon L Burm). Scientia Horticulturae, 246, 462–468. https://doi.org/10.1016/j.scienta.2018.11.040

    Article  Google Scholar 

  53. de Abreu, J. R., dos Santos, C. D., de Abreu, C. M. P., Corrêa, A. D., & de Lima, L. C. (2012). Sugar fractionation and pectin content during the ripening of guava cv. Pedro Sato. Food Science and Technology, 32, 156–162.

    Article  Google Scholar 

  54. Araújo, H. M., Rodrigues, F. F., Costa, W. D., de FA Nonato, C., Rodrigues, F. F., Boligon, A. A., & Costa, J. G. (2015). Chemical profile and antioxidant capacity verification of Psidium guajava (Myrtaceae) fruits at different stages of maturation. Excli Journal, 14(1), 1020–1030. https://doi.org/10.17179/excli2015-522

  55. Trong, L. V., Khanh, N. N., Huyen, L. T., Hien, V. T. T., & Lam, L. T. (2021). Changes in physiological and biochemical parameters during the growth and development of guava fruit (Psidium guajava) grown in Vietnam. Revista De La Facultad De Ciencias Agrarias Universidad Nacional De Cuyo, 53(2), 82–90.

    Google Scholar 

  56. Dantas, A. L., Silva, S. M., de Lima, M. A. C., Dantas, R. L., & Mendonça, R. M. N. (2013). Bioactive compounds and antioxidant activity during maturation of strawberry guava fruit. Revista Ciência Agronômica, 44(4), 805–814. https://doi.org/10.1590/S1806-66902013000400018

    Article  Google Scholar 

  57. Jain, N., Dhawan, K., Malhotra, S., & Singh, R. (2003). Biochemistry of fruit ripening of guava (Psidium guajava L.): Compositional and enzymatic changes. Plant Foods for Human Nutrition, 58, 309–315. https://doi.org/10.1023/B:QUAL.0000040285.50062.4b

    Article  CAS  PubMed  Google Scholar 

  58. Zhou, X., Huang, W., Zhang, J., Kong, W., Casa, R., & Huang, Y. (2019). A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation, 76, 128–142. https://doi.org/10.1016/j.jag.2018.10.012

    Article  ADS  Google Scholar 

  59. Rojas-Garbanzo, C., Zimmermann, B. F., Schulze-Kaysers, N., & Schieber, A. (2017). Characterization of phenolic and other polar compounds in peel and flesh of pink guava (Psidium guajava L. Cv.‘Criolla’) by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Food Research International, 100(3), 445–453. https://doi.org/10.1016/j.foodres.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, H., Mo, X., Tang, D., Ma, Y., **e, Y., Yang, H., & Xu, J. (2021). Comparative analysis of volatile and carotenoid metabolites and mineral elements in the flesh of 17 kiwifruit. Journal of Food Science, 86(7), 3023–3032. https://doi.org/10.1111/1750-3841.15796

  61. Lyu, Y., Chen, Q., Gou, M., Wu, X., & Bi, J. (2023). Influence of different pre-treatments on flavor quality of freeze-dried carrots mediated by carotenoids and metabolites during 120-day storage. Food Research International, 170, 113050.

    Article  PubMed  Google Scholar 

  62. Monribot-Villanueva, J. L., Altúzar-Molina, A., Aluja, M., Zamora-Briseño, J. A., Elizalde-Contreras, J. M., Bautista-Valle, M. V., & Ruiz-May, E. (2022). Integrating proteomics and metabolomics approaches to elucidate the ripening process in white Psidium guajava. Food Chemistry, 367, 130656. https://doi.org/10.1016/j.foodchem.2021.130656

  63. Einhellig, F. A., & Rasmussen, J. A. (1979). Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. Journal of Chemical Ecology, 5(5), 815–824. https://doi.org/10.1007/BF00986566

    Article  CAS  Google Scholar 

  64. Emanuel, M. A., & Benkeblia, N. (2010). Variation of color, reducing and total sugars, total phenolics and chlorophylls in carambola (Averrhoa carambola L.) during five on tree ripening stages. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Plant 932 (pp. 285–290). Retrieved from https://www.actahort.org/books/932/932_41.htm

  65. Arena, M. E., Postemsky, P., & Curvetto, N. R. (2012). Accumulation patterns of phenolic compounds during fruit growth and ripening of Berberis Buxifolia, a native Patagonian species. New Zealand Journal of Botany, 50(1), 15–28.

    Article  Google Scholar 

  66. Bashir, H. A., & Abu-Goukh, A. B. A. (2003). Compositional changes during guava fruit ripening. Food Chemistry, 80(4), 557–563. https://doi.org/10.1016/S0308-8146(02)00345-X

    Article  CAS  Google Scholar 

  67. Mahmood, T., Anwar, F., Abbas, M., & Saari, N. (2012). Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan. International Journal of Molecular Sciences, 13(4), 4591–4607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guofang, X., **aoyan, X., **aoli, Z., Yongling, L., & Zhibing, Z. (2019). Changes in phenolic profiles and antioxidant activity in rabbiteye blueberries during ripening. International Journal of Food Properties, 22(1), 320–329.

    Article  Google Scholar 

  69. Betta, F. D., Nehring, P., Seraglio, S. K. T., Schulz, M., Valese, A. C., Daguer, H., & Costa, A. C. O. (2018). Phenolic compounds determined by LC-MS/MS and in vitro antioxidant capacity of Brazilian fruits in two edible ripening stages. Plant Foods for Human Nutrition, 73, 302–307.

  70. Egea, M. B., & Pereira-Netto, A. B. (2019). Bioactive compound-rich, virtually unknown, edible fruits from the Atlantic Rainforest: Changes in antioxidant activity and related bioactive compounds during ripening. European Food Research and Technology, 245(5), 1081–1093. https://doi.org/10.1007/s00217-018-3208-z

    Article  CAS  Google Scholar 

  71. Maria do Socorro, M. R., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

    Article  CAS  Google Scholar 

  72. Omayio, D. G., Abong’, G. O., Okoth, M. W., Gachuiri, C. K., & Mwangombe, A. W. (2022). Physicochemical and processing qualities of guava varieties in Kenya. International Journal of Fruit Science, 22(1), 329–345.

    Article  Google Scholar 

  73. Flores, G., Wu, S. B., Negrin, A., & Kennelly, E. J. (2015). Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chemistry, 170(1), 327–335. https://doi.org/10.1016/j.foodchem.2014.08.076

    Article  CAS  PubMed  Google Scholar 

  74. Molina-Quijada, D. M. A., Medina-Juárez, L. A., González-Aguilar, G. A., Robles-Sánchez, R. M., & Gámez-Meza, N. (2010). Compuestos fenólicos y actividad antioxidante de cáscara de uva (Vitis vinifera L.) de mesa cultivada en El noroeste de México phenolic compounds and antioxidant activity of table grape (Vitis vinifera L.) skin from Northwest Mexico. CyTA–Journal of Food, 8(1), 57–63.

    Article  CAS  Google Scholar 

  75. Chen, Q., Wang, D., Tan, C., Hu, Y., Sundararajan, B., & Zhou, Z. (2020). Profiling of flavonoid and antioxidant activity of fruit tissues from 27 Chinese local citrus cultivars. Plants, 9(2), 196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena–An overview. Critical Reviews in food Science and Nutrition, 47(1), 1–19.

    Article  CAS  PubMed  Google Scholar 

  77. Schulz, M., Seraglio, S. K. T., Della Betta, F., Nehring, P., Valese, A. C., Daguer, H., & Fett, R. (2020). Determination of phenolic compounds in three edible ripening stages of yellow guava (Psidium cattleianum Sabine) after acidic hydrolysis by LC-MS/MS. Plant Foods for Human Nutrition, 75, 110–115.

  78. Alves, A. M., Dias, T., Hassimotto, N. M. A., & NaveS, M. M. V. (2017). Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian Savannah native fruits. Food Science and Technology, 37, 564–569.

    Article  Google Scholar 

  79. Dawidowicz, A. L., Olszowy, M., & Jóźwik-Dolęba, M. (2015). Importance of solvent association in the estimation of antioxidant properties of phenolic compounds by DPPH method. Journal of Food Science and Technology, 52(7), 4523–4529. https://doi.org/10.1007/s13197-014-1451-2

    Article  CAS  PubMed  Google Scholar 

  80. Çelik, S. E., Özyürek, M., Güçlü, K., & Apak, R. (2010). Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta, 81(4), 1300–1309. https://doi.org/10.1016/j.talanta.2010.02.025

    Article  CAS  PubMed  Google Scholar 

  81. Kainama, H., Fatmawati, S., Santoso, M., Papilaya, P. M., & Ersam, T. (2020). The relationship of free radical scavenging and total phenolic and flavonoid contents of Garcinia Lasoar PAM. Pharmaceutical Chemistry Journal, 53(12), 1151–1157. https://doi.org/10.1007/s11094-020-02139-5

    Article  CAS  Google Scholar 

  82. Duan, S. C., Kwon, S. J., & Eom, S. H. (2021). Effect of thermal processing on color, phenolic compounds, and antioxidant activity of faba bean (Vicia faba L.) leaves and seeds. Antioxidants, 10(8), 1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muflihah, Y. M., Gollavelli, G., & Ling, Y. C. (2021). Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants, 10(10), 1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wairata, J., Fadlan, A., Purnomo, A. S., Taher, M., & Ersam, T. (2022). Total phenolic and flavonoid contents, antioxidant, antidiabetic and antiplasmodial activities of Garcinia Forbesii King: A correlation study. Arabian Journal of Chemistry, 15(2), 103541.

    Article  CAS  Google Scholar 

  85. Shukla, S., Kushwaha, R., Singh, M., Saroj, R., Puranik, V., Agarwal, R., & Kaur, D. (2021). Quantification of bioactive compounds in guava at different ripening stages. Food Research, 5(3), 183–189.

    Article  Google Scholar 

  86. Aliansa, T., Munir, M. A., Aprilia, V., & Emelda, E. (2023). The determination of vitamin C in guava (Myrtaceae species) using spectrophotometric approach. Asian Journal of Analytical Chemistry, 1(1), 6–11. https://doi.org/10.53866/ajac.v1i1.268

    Article  Google Scholar 

  87. Dhianawaty, D., Atik, N., Dwiwina, R. G., & Muda, I. (2022). Preliminary identification and quantification of four secondary metabolites, total tannin and total flavonoid contents in guava fruit ethanol extract. Pharmacognosy Journal, 14(2). https://doi.org/10.5530/pj.2022.14.45

Download references

Acknowledgements

The authors are indebted to IIHR (Indian Institute of Horticulture Research), Bangalore, for providing the authentic guava cultivar Arka mridula. Finally, the authors thank Siddaganga Institute of Technology, Tumakuru, for allowing access to their Scanning Electron Microscope facility for this work. The authors acknowledge CHRIST (Deemed to be University), Bangalore, for providing research fellowships to Mr. Yatheesharadhya B.

Author information

Authors and Affiliations

Authors

Contributions

YB performed the experiments and wrote the manuscript. AN supervised the entire work edited and corrected the manuscript.

Corresponding author

Correspondence to Anish Nag.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

All authors reviewed the manuscript and gave consent for publications.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.30 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bylappa, Y., Nag, A. Unravelling Post-harvest Ripening Metabolomics of a New White Variety Guava Fruit (Cv Arka Mridula) with Special Emphasis on Phenolics and Corresponding Antioxidants. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04907-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04907-5

Keywords

Navigation