Log in

Immobilization of Lipase from Candida antarctica B (CALB) by Sol–Gel Technique Using Rice Husk Ash as Silic Source and Ionic Liquid as Additive

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract 

This work presents the immobilization in situ of commercial lipase from Candida antarctica B (CALB) by the sol–gel technique (xerogel) using silica from rice husk ash (RHA) as a source of silicon. It was used the Ionic Liquid (IL) 1-octyl-3-methylimidazolium bromide (C8MI.Br) as additive. The immobilized derivatives were characterized per SEM, XRD, and per method BET. The enzymatic activity of xerogels was evaluated with different tests, these being the reactional thermal analysis, immobilization yield, and operational and storage stability. The XDR showed that the obtained xerogels have halos in the region between 15 and 35° (2θ) what characterizes it as amorphous materials. The SEM analysis of xerogel shows irregular particles with dimensions less than 20 μm. The immobilized presented an esterification activity (EA) with 263.2 and 213.8 U/g, with and without IL, respectively, higher than the free enzyme (169.6 U/g). The immobilized, with and without IL, presented a significant improvement in the activity performance in relation to free enzyme for the three reactional temperatures (40, 60, and 80 °C) evaluated. The operational stability demonstrated that is possible to use xerogel without ionic liquid for 17 recycles and 21 recycles in IL presence. This methodology allows the preparation of new highly active and selective enzyme catalysts using the rice husk ash as a source of silicon, and the ionic liquid [C8MI]Br as additive. Furthermore, the new materials can provide greater viability in the processes, ensuring longer catalyst life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References 

  1. Antunes, A., Ficanha, A. M. M., da Silva, L. M., Comin, T., Venquiaruto, L. D., Mignoni, M. L., Preczewski, J. D., Dallago, R. M., & Zeni, J. (2019). Imobilização da Lipase CALB em Xerogel Utilizando TMOS como Precursor sa Sílica e PVA como Aditivo. Revista Perspectiva, 43(163), 71–83. ISSN 0101-2908.

    Google Scholar 

  2. Azat, S., Korobeinyk, A. V., Moustakas, K., & Inglezakis, V. J. (2019). Sustainable production of pure silica from rice husk waste in Kazakhstan. Journal of Cleaner Production, 217, 352–359. https://doi.org/10.1016/j.jclepro.2019.01.142

    Article  CAS  Google Scholar 

  3. Bakar, R. A., Yahya, R., & Gan, S. N. (2016). Production of high purity amorphous silica from rice husk. Procedia Chemistry, 19, 189–195. https://doi.org/10.1016/j.proche.2016.03.092

    Article  CAS  Google Scholar 

  4. Battiston, C. S. Z., Ficanha, A. M. M., Oro, C. E. D., Dallago, R. M., & Mignoni, M. L. (2021). In situ calb enzyme immobilization in mesoporous material type MCM-48 synthesis using ionic solid [C14MI]Cl as structure-directing agent. Applied Biochemistry and Biotechnology, 194, 748. https://doi.org/10.1007/s12010-021-03648-z

    Article  PubMed  CAS  Google Scholar 

  5. Bordin, I., de Pedott, V. A., Oro, C. E. D., Junges, A., Dallago, R. M., & Mignoni, M. L. (2021). Nb-MCM-type mesoporous material synthesis using ionic solid as structure-directing agent for in situ lipase immobilization. Applied Biochemistry and Biotechnology, 193, 1072–1085. https://doi.org/10.1007/s12010-020-03484-7

    Article  PubMed  CAS  Google Scholar 

  6. Brunauer, S., Emmet, T. P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  7. Chandrasekhar, S., Pramada, P. N., & Majeed, J. (2006). Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. Journal of Materials Science, 41(23), 7926–7933. https://doi.org/10.1007/s10853-006-0859-0

    Article  CAS  Google Scholar 

  8. Costa, J. A. S., & Paranhos, C. M. (2018). Systematic evaluation of amorphous silica production from rice husk ashes. Journal of Cleaner Production, 192, 688–697. https://doi.org/10.1016/j.jclepro.2018.05.028

    Article  CAS  Google Scholar 

  9. Costantini, A., & Califano, V. (2021). Lipase immobilization in mesoporous silica nanoparticles for biofuel production. Catalysts, 11(5), 629. https://doi.org/10.3390/catal11050629

    Article  CAS  Google Scholar 

  10. Costa-Silva, T. A., Carvalho, A. K. F., Souza, C. R. F., de Castro, H. F., Bachmann, L., Said, S., & Oliveira, W. P. (2021). Immobilized enzyme-driven value enhancement of lignocellulosic-based agricultural byproducts: application in aroma synthesis. Journal of Cleaner Production, 284, 124728. https://doi.org/10.1016/j.jclepro.2020.124728

    Article  CAS  Google Scholar 

  11. Costa-Silva, T. A., Souza, C. R. F., Said, S., & Oliveira, W. P. (2015). Drying of enzyme immobilized on eco-friendly supports. African Journal Of Biotechnology, 14(44), 3019–3026. https://doi.org/10.5897/ajb2015.14830

    Article  CAS  Google Scholar 

  12. Ficanha, A. M. M., Antunes, A., Oro, C. E. D., Dallago, R. M., & Mignoni, M. L. (2020). Immobilization of candida antarctica B (Calb) in silica aerogel: Morphological characteristics and stability. Biointerface Research in Applied Chemistry., 10(6), 6744–6756. https://doi.org/10.33263/BRIAC106.67446756

    Article  CAS  Google Scholar 

  13. Ficanha, A. M. M., Antunes, A., Oro, C. E. D., Valduga, A. T., Matuella Moreira, C., Dallago, R. M., & Mignoni, M. (2019). Study of drying conditions of the aerogel obtained by the sol-gel technique for immobilization in situ of lipase Candida antarctica B. Industrial Biotechnology, 15(6), 350–356. https://doi.org/10.1089/ind.2019.0003

    Article  CAS  Google Scholar 

  14. Ficanha, A. M. M., Oro, C. E. D., Franceschi, E., Dallago, R. M., & Mignoni, M. L. (2021). Evaluation of different ionic liquids as additives in the immobilization of lipase CAL B by sol-gel technique. Applied Biochemistry and Biotechnology, 193, 2162–2181. https://doi.org/10.1007/s12010-021-03533-9

    Article  PubMed  CAS  Google Scholar 

  15. Furlani, I. L., Amaral, B. S., Oliveira, R. V., & Cassa, Q. B. (2020). Imobilização Enzimática: Conceito e Efeitos na Proteólise. Quimica Nova, 43(4), 463–473. https://doi.org/10.21577/0100-4042.20170525

    Article  CAS  Google Scholar 

  16. Girelli, A. M., Astolfi, M. L., & Scuto, F. R. (2020). Agro-industrial wastes as potential carriers for enzyme immobilization: A review. Chemosphere, 244, 125368. https://doi.org/10.1016/j.chemosphere.2019.125368

    Article  PubMed  CAS  Google Scholar 

  17. Holbrey, J. D., Seddon, K. R., & J. (1999). The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; Ionic liquids and ionic liquid crystals. Journal of the Chemical Society, Dalton Transactions, 13, 2133–2140. https://doi.org/10.1039/A902818H

    Article  Google Scholar 

  18. Hossain, S. K. S., Mathur, L., & Roy, P. K. (2018). Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. Journal of Asian Ceramic Societies, 6(4), 299–313. https://doi.org/10.1080/21870764.2018.1539210

    Article  Google Scholar 

  19. Imam, H. T., Marr, P. C., & Marr, A. C. (2021). Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chemistry, 23(14), 4980–5005. https://doi.org/10.1039/d1gc01852c

    Article  CAS  Google Scholar 

  20. Imoisili, P. E., Ukoba, K. O., & Tien-Chien, Jen. (2020). Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 59(4), 159–164. https://doi.org/10.1016/j.bsecv.2019.09.006

    Article  CAS  Google Scholar 

  21. Kaya, G. G., Yilmaz, E., & Deveci, H. (2020). Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: A comparison study. Advanced Powder Technology, 31(3), 926–936. https://doi.org/10.1016/j.apt.2019.12.013

    Article  CAS  Google Scholar 

  22. Levandoski, K. L. D., Ficanha, A. M. M., Antunes, A., Dallago, R. M., & Mignoni, M. L. (2015) Imobilização Da Lipase Cal B Em Xerogel Obtido Pela Técnica Sol-Gel. Congresso Brasileiro de Engenharia Química em Iniciação Científica, 1(3), 51–60. Acesso: http://pdf.blucher.com.br.s3-sa-east1.amazonaws.com/chemicalengineeringproceedings/cobeqic2015/356-33965-260902.pdf

  23. Lima, S. P. B. D., de Paiva Vasconcelos, R. P., Paiva, O. A., Cordeiro, G. C., de Morais Chaves, M. R., Filho, R. D. T., & de Fairbairn, E. M. R. (2011). Production of silica gel from rice husk ash ali w anderimam obadiah. Química Nova, 34, 71–75. https://doi.org/10.1590/S0100-40422011000100014

    Article  Google Scholar 

  24. Lisboa, M. C., Rodrigues, C. A., Barbosa, A. S., Mattedi, S., Freitas, L. S., Mendes, A. A., Dariva, C., Franceschi, E., Lima, Á. S., & Soares, C. M. F. (2018). New perspectives on the modification of silica aerogel particles with ionic liquid used in lipase immobilization with platform in ethyl esters production. Process Biochemistry, 75, 157–165. https://doi.org/10.1016/j.procbio.2018.09.015

    Article  CAS  Google Scholar 

  25. Machado, N. B., Miguez, J. P., Bolina, I. C. A., Salviano, A. B., Gomes, R. A. B., Tavano, O. L., Luiz, J. H. H., Tardioli, P. W., Cren, É. C., & Mendes, A. A. (2019). Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme and Microbial Technology, 128, 9–21. https://doi.org/10.1016/j.enzmictec.2019.05.001

    Article  PubMed  CAS  Google Scholar 

  26. Monteiro, R. R. C., Lima, P. J. M., Pinheiro, B. B., Freire, T. M., Dutra, L. M. U., Fechine, P. B. A., Gonçalves, L. R. B., De Souza, M. C. M., Dos Santos, J. C. S., & Fernandez-Lafuente, R. (2019). Immobilization of lipase a from Candida antarctica onto Chitosan-coated magnetic nanoparticles. International Journal of Molecular Sciences, 20, 16. https://doi.org/10.3390/ijms20164018

    Article  CAS  Google Scholar 

  27. Nyari, N. L. D., Fernandes, I. A., Bustamante-Vargas, C. E., Steffens, C., de Oliveira, D., Zeni, J., Rigo, E., & Dallago, R. M. (2016). In situ immobilization of Candida antarctica B lipase in polyurethane foam support. Journal of Molecular Catalysis B: Enzymatic, 124, 52–61. https://doi.org/10.1016/j.molcatb.2015.12.003

    Article  CAS  Google Scholar 

  28. Nyari, N. L. D., Zabot, G. L., Zamadei, R., Paluzzi, A. R., Tres, M. V., Zeni, J., Venquiaruto, L. D., & Dallago, R. M. (2018). Activation of Candida antarctica lipase B in pressurized fluids for the synthesis of esters. Journal of Chemical Technology and Biotechnology, 93, 897–908. https://doi.org/10.1002/jctb.5447

    Article  CAS  Google Scholar 

  29. Onoja, E., Chandren, S., Razak, F. I. A., & Wahab, R. A. (2018). Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Journal of Biotechnology, 283, 81–96. https://doi.org/10.1016/j.jbiotec.2018.07.036

    Article  PubMed  CAS  Google Scholar 

  30. Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, 53, 1468–1485. https://doi.org/10.1016/j.rser.2015.09.051

    Article  Google Scholar 

  31. Quayson, E., Amoah, J., Hama, S., Kondo, A., & Ogino, C. (2020). Immobilized lipases for biodiesel production: Current and future greening opportunities. Renewable and Sustainable Energy Reviews, 134, 110355. https://doi.org/10.1016/j.rser.2020.110355

    Article  CAS  Google Scholar 

  32. Reaño, R. L. (2020). Assessment of environmental impact and energy performance of rice husk utilization in various biohydrogen production pathways. Bioresource Technology, 299, 122590. https://doi.org/10.1016/j.biortech.2019.122590

    Article  PubMed  CAS  Google Scholar 

  33. Rizki, K., Pranowo, D., & Joko Raharjo, T. (2020). Immobilization of lipase in silica gel from rice husk ash and its activity assay to hydrolyze palm oil. BIO Web of Conferences, 28, 03005. https://doi.org/10.1051/bioconf/20202803005

  34. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  35. Ulker, C., Gokalp, N., & Guvenilir, Y. (2016). Immobilization of Candida antarctica lipase B (CALB) on surface-modified rice husk ashes (RHA) via physical adsorption and cross-linking methods. Biocatalysis And Biotransformation, 34(4), 172–180. https://doi.org/10.1080/10242422.2016.1247818

    Article  CAS  Google Scholar 

  36. **e, H., Huang, J., Woo, M. W., Hu, J., **ong, H., & Zhao, Q. (2021). Effect of cold and hot enzyme deactivation on the structural and functional properties of rice dreg protein hydrolysates. Food Chemistry, 345, 128784. https://doi.org/10.1016/j.foodchem.2020.128784

    Article  PubMed  CAS  Google Scholar 

  37. **e, W., & Zang, X. (2018). Lipase immobilized on ionic liquid-functionalized magnetic silica composites as a magnetic biocatalyst for production of trans-free plastic fats. Food Chemistry, 257, 15–22. https://doi.org/10.1016/j.foodchem.2018.03.010

    Article  PubMed  CAS  Google Scholar 

  38. Zhang, W., Wang, N., Zhang, L., Wu, W., Hu, C., & Yu, X. (2014). Effects of additives on lipase immobilization in microemulsion-based organogels. Applied Biochemistry and Biotechnology, 172(6), 3128–3140. https://doi.org/10.1007/s12010-014-0746-0

    Article  PubMed  CAS  Google Scholar 

  39. Zhong, L., He, C., **ao, C., Yao, C., Pyatt, I. H., & Lu, Y. (2021). Covalent immobilization of Candida antarctica Lipase B on functionalized hollow mesoporous silica nanoparticles. ChemistrySelect, 6(14), 3453–3460. https://doi.org/10.1002/slct.202100713

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to URI Erechim, National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES) and Research Support Foundation of the State of Rio Grande do Sul (FAPERGS).

Funding

This work was financially supported by CAPES, FAPERGS, and CNPq.

Author information

Authors and Affiliations

Authors

Contributions

J.F. Vesoloski: Investigation & Writing.

A.S. Todero: Investigation & Writing

R.J. Macieski: Investigation & Writing

F.O. Pereira: Investigation & Writing

R.M. Dallago: Formal Analysis, Writing, Review & Editing

M.L. Mignoni: Supervision, Formal Analysis, Writing, Review & Editing

Corresponding author

Correspondence to Marcelo Luis Mignoni.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors gave their consent to participate in the article. (Marcelo L. Mignoni—on behalf of all co-authors.)

Consent for Publication

All authors gave their consent for publication of the article if it was accepted. (Marcelo L. Mignoni—on behalf of all co-authors.)

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•Silicon from rice husk ash was successfully used for in situ immobilization of CALB in xerogel.

•CALB immobilized in sol-gel presented 21 recycles with IL C8MI.Br and 17 without IL C8MI.Br.

•Enzymatic activity remained stable for 96 days; however, the tests just with enzyme reached 126 days.

•The supports were able to catalyze the esterification reaction at 40, 60, and 80 °C.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vesoloski, J.F., Todero, A.S., Macieski, R.J. et al. Immobilization of Lipase from Candida antarctica B (CALB) by Sol–Gel Technique Using Rice Husk Ash as Silic Source and Ionic Liquid as Additive. Appl Biochem Biotechnol 194, 6270–6286 (2022). https://doi.org/10.1007/s12010-022-04096-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04096-z

Keywords

Navigation