Log in

Co-immobilized Alcohol Dehydrogenase and Glucose Dehydrogenase with Resin Extraction for Continuous Production of Chiral Diaryl Alcohol

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ni2+-functionalized porous ceramic/agarose composite beads (Ni-NTA Cerose) can be used as carrier materials to immobilize enzymes harboring a metal affinity tag. Here, a 6×His-tag fusion alcohol dehydrogenase Mu-S5 and glucose dehydrogenase from Bacillus megaterium (BmGDH) were co-immobilized on Ni-NTA Cerose to construct a packed bed reactor (PBR) for the continuous synthesis of the chiral intermediate (S)-(4-chlorophenyl)-(pyridin-2-yl) methanol ((S)-CPMA) NADPH recycling, and in situ product adsorption was achieved simultaneously by assembling a D101 macroporous resin column after the PBR. Using an optimum enzyme activity ratio of 2:1 (Mu-S5: BmGDH) and hydroxypropyl-β-cyclodextrin as co-solvent, a space-time yield of 1560 g/(L·d) could be achieved in the first three days at a flow rate of 5 mL/min and substrate concentration of 10 mM. With simplified selective adsorption and extraction procedures, (S)-CPMA was obtained in 84% isolated yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADH:

Alcohol dehydrogenase

GDH:

Glucose dehydrogenase

FDH:

Formate dehydrogenase

CPMK:

(4-Chlorophenyl)(pyridine-2-yl)ketone

(S)-CPMA:

(S)-(4-Chlorophenyl)-(pyridin-2-yl) methanol

DNPH:

2,4-Dinitrophenylhydrazine

PBR:

Packed bed reactor

Cerose:

Ceramic/agarose composite beads

References

  1. Britton, J., Majumdar, S., & Weiss, G. A. (2018). Continuous flow biocatalysis. Chemical Society Reviews, 47(15), 5891–5918.

    Article  CAS  Google Scholar 

  2. Adamo, A., Beingessner, R. L., Behnam, M., Chen, J., Jamison, T. F., Jensen, K. F., Monbaliu, J. M., Myerson, A. S., Revalor, E. M., Snead, D. R., Stelzer, T., Weeranoppanant, N., Wong, S. Y., & Zhang, P. (2016). Science, 352, 54–61.

    Article  Google Scholar 

  3. Webb, D., & Jamison, T. F. (2010). Continuous flow multi-step organic synthesis. Chemical Science, 1(6), 675–680.

    Article  CAS  Google Scholar 

  4. Cuong, N. P., Lee, W., Oh, I., Thuy, N. M., Kim, D., Park, J., & Park, K. (2016). Continuous production of pure maltodextrin from cyclodextrin using immobilized Pyrococcus furiosus thermostable amylase. Process Biochemistry, 51(2), 282–287.

    Article  CAS  Google Scholar 

  5. Cimporescu, A., Todea, A., Badea, V., Paul, C., & Peter, F. (2016). Efficient kinetic resolution of 1,5-dihydroxy-1,2,3,4-tetrahydronaphthalene catalyzed by immobilized Burkholderia cepacia lipase in batch and continuous-flow system. Process Biochemistry, 51(12), 2076–2083.

    Article  CAS  Google Scholar 

  6. Jia, C., Wang, H., Zhang, W., Zhang, X., & Feng, B. (2018). Efficient enzyme-selective synthesis of monolauryl mannose in a circulating fluidized bed reactor. Process Biochemistry, 66, 28–32.

    Article  CAS  Google Scholar 

  7. de Oliveira Lopes, R., Ribeiro, J. B., Silva De Miranda, A., Vieira Da Silva, G. V., Miranda, L. S. M., Ramos Leal, I. C., & Mendonça Alves De Souza, R. O. (2014). Tetrahedron, 70, 3239–3242.

    Article  Google Scholar 

  8. Tamborini, L., Romano, D., Pinto, A., Contente, M., Iannuzzi, M. C., Conti, P., & Molinari, F. (2013). Biotransformation with whole microbial systems in a continuous flow reactor: resolution of (RS)-flurbiprofen using Aspergillus oryzae by direct esterification with ethanol in organic solvent. Tetrahedron Letters, 54(45), 6090–6093.

    Article  CAS  Google Scholar 

  9. Döbber, J., Gerlach, T., Offermann, H., Rother, D., & Pohl, M. (2018). Closing the gap for efficient immobilization of biocatalysts in continuous processes: HaloTag™ fusion enzymes for a continuous enzymatic cascade towards a vicinal chiral diol. Green Chemistry, 20(2), 544–552.

    Article  Google Scholar 

  10. **ao, M., Qi, C., & Obbard, J. P. (2011). Bioenergy, 3, 293–298.

    CAS  Google Scholar 

  11. Tan, A. W., Fischbach, M., Huebner, H., Buchholz, R., Hummel, W., Daussmann, T., Wandrey, C., & Liese, A. (2006). Synthesis of enantiopure (5R)-hydroxyhexane-2-one with immobilised whole cells of Lactobacillus kefiri. Applied Microbiology and Biotechnology, 71(3), 289–293.

    Article  CAS  Google Scholar 

  12. Thompson, M. P., Peñafiel, I., Cosgrove, S. C., & Turner, N. J. (2018). Organic Process Research and Development, 23, 9–18.

    Article  Google Scholar 

  13. Li, F., Zheng, Y., Li, H., Chen, F., Yu, H., & Xu, J. (2019). Preparing β-blocker (R)-Nifenalol based on enantioconvergent synthesis of (R)-p-nitrophenylglycols in continuous packed bed reactor with epoxide hydrolase. Tetrahedron, 75(12), 1706–1710.

    Article  CAS  Google Scholar 

  14. Orrego, A. H., López-Gallego, F., Espaillat, A., Cava, F. M. J., & A, G.A.A.J. (2018). ChemCatChem, 10, 3002–3011.

    Article  CAS  Google Scholar 

  15. García-García, P., Rocha-Martin, J., Fernandez-Lorente, G., & Guisan, J. M. (2018). Enzyme and Microbial Technology, 115, 73–80.

    Article  Google Scholar 

  16. Arana-Pena, S., Carballares, D., Morellon-Sterlling, R., Berenguer-Murcia, A., Alcantara, A. R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2020). Enzyme co-immobilization: Always the biocatalyst designers’ choice…or not? Biotechnology Advances, 107584https://doi.org/10.1016/j.biotechadv.2020.107584.

  17. Rocha-Martín, J., Rivas, B. D. L., Muñoz, R., Guisán, J. M., & López-Gallego, F. (2012). Rational Co-Immobilization of Bi-Enzyme Cascades on Porous Supports and their Applications in Bio-Redox Reactions with In Situ Recycling of Soluble Cofactors. ChemCatChem, 4(9), 1279–1288.

    Article  Google Scholar 

  18. Trobo-Maseda, L., Orrego, A. H., Guisan, J. M., & Rocha-Martin, J. (2020). Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: Glycosylation of resveratrol 3-O-β-D-glucoside. International Journal of Biological Macromolecules, 157, 510–521.

    Article  CAS  Google Scholar 

  19. Hearon, J. Z., Sundberg, L., & MalmstrOm, B. G. (1975). Nature, 258, 598–599.

    Article  Google Scholar 

  20. Planchestainer, M., Contente, M. L., Cassidy, J., Molinari, F., Tamborini, L., & Paradisi, F. (2017). Continuous flow biocatalysis: production and in-line purification of amines by immobilised transaminase from Halomonas elongata. Green Chemistry, 19(2), 372–375.

    Article  CAS  Google Scholar 

  21. Liu, J., Pang, B. Q. W., Adams, J. P., Snajdrova, R., & Li, Z. (2017). Coupled Immobilized Amine Dehydrogenase and Glucose Dehydrogenase for Asymmetric Synthesis of Amines by Reductive Amination with Cofactor Recycling. ChemCatChem, 9(3), 425–431.

    Article  CAS  Google Scholar 

  22. Vahidi, A. K., Yang, Y., Ngo, T. P. N., & Li, Z. (2015). Simple and Efficient Immobilization of Extracellular His-Tagged Enzyme Directly from Cell Culture Supernatant As Active and Recyclable Nanobiocatalyst: High-Performance Production of Biodiesel from Waste Grease. ACS Catalysis, 5(6), 3157–3161.

    Article  CAS  Google Scholar 

  23. Yang, J., Ni, K., Wei, D., & Ren, Y. (2015). One-step purification and immobilization of his-tagged protein via Ni2+-functionalized Fe3O4@polydopamine magnetic nanoparticles. Biotechnology and Bioprocess Engineering, 20(5), 901–907.

    Article  CAS  Google Scholar 

  24. Engelmark Cassimjee, K., Kadow, M., Wikmark, Y., Svedendahl Humble, M., Rothstein, M. L., Rothstein, D. M., & Bäckvall, J. E. (2014). A general protein purification and immobilization method on controlled porosity glass: biocatalytic applications. Chemical Communications, 50(65), 9134.

    Article  CAS  Google Scholar 

  25. Ueda, E. K. M., Gout, P. W., & Morganti, L. (2003). Current and prospective applications of metal ion–protein binding. Journal of Chromatography. A, 988(1), 1–23.

    Article  CAS  Google Scholar 

  26. Chou, Y., Ko, C., Chen, L. O., & Shaw, C. Y. (2015). Purification and Immobilization of the Recombinant Brassica oleracea Chlorophyllase 1 (BoCLH1) on DIAION®CR11 as Potential Biocatalyst for the Production of Chlorophyllide and Phytol. Molecules, 20(3), 3744–3757.

    Article  CAS  Google Scholar 

  27. Böhmer, W., Knaus, T., & Mutti, F. G. (2018). Hydrogen-Borrowing Alcohol Bioamination with Coimmobilized Dehydrogenases. ChemCatChem, 10(4), 731–735.

    Article  Google Scholar 

  28. Melchers, K., Herrmann, L., Mauch, F., Bayle, D., Heuermann, D., Weitzenegger, T., Schuhmacher, A., Sachs, G., Haas, R., Bode, G., Bensch, K., & Schäfer, K. P. (1998). Acta Physiologica Scandinavica. Supplementum, 643, 123–135.

    CAS  PubMed  Google Scholar 

  29. Melchers, K., Weitzenegger, T., Buhmann, A., Steinhilber, W., Sachs, G., & Schafer, K. P. (1996). Cloning and Membrane Topology of a P type ATPase from Helicobacter pylori. The Journal of Biological Chemistry, 271(1), 446–457.

    Article  CAS  Google Scholar 

  30. Hou, J., **, Q., Du, J., Li, Q., Yuan, Q., & Yang, J. (2014). A rapid in situ immobilization of d-amino acid oxidase based on immobilized metal affinity chromatography. Bioprocess and Biosystems Engineering, 37(5), 857–864.

    Article  CAS  Google Scholar 

  31. Dall'Oglio, F., Contente, M. L., Conti, P., Molinari, F., Monfredi, D., Pinto, A., Romano, D., Ubiali, D., Tamborini, L., & Serra, I. (2017). Flow-based stereoselective reduction of ketones using an immobilized ketoreductase/glucose dehydrogenase mixed bed system. Catalysis Communications, 93, 29–32.

    Article  CAS  Google Scholar 

  32. Peschke, T., Bitterwolf, P., Gallus, S., Hu, Y., Oelschlaeger, C., Willenbacher, N., Rabe, K. S., & Niemeyer, C. M. (2018). Angewandte Chemie, International Edition, 57, 17028–17032.

    Article  CAS  Google Scholar 

  33. Fassouane, A., Laval, J. M., Moiroux, J., & Bourdillon, C. (1990). Electrochemical regeneration of NAD in a plug-flow reactor. Biotechnology and Bioengineering, 35(9), 935–939.

    Article  CAS  Google Scholar 

  34. Ruinatscha, R., Buehler, K., & Schmid, A. (2014). Development of a high performance electrochemical cofactor regeneration module and its application to the continuous reduction of FAD. Journal of Molecular Catalysis B: Enzymatic, 103, 100–105.

    Article  CAS  Google Scholar 

  35. Velasco-Lozano, S., Benítez-Mateos, A. I., & López-Gallego, F. (2017). Angewandte Chemie, International Edition, 56, 771–775.

    Article  CAS  Google Scholar 

  36. Benítez-Mateos, A. I., San Sebastian, E., Ríos-Lombardía, N., Morís, F., González-Sabín, J., & López-Gallego, F. (2017). Asymmetric Reduction of Prochiral Ketones by Using Self-Sufficient Heterogeneous Biocatalysts Based on NADPH-Dependent Ketoreductases. Chemistry - A European Journal, 23(66), 16843–16852.

    Article  Google Scholar 

  37. Zhou, J., Xu, G., Han, R., Dong, J., Zhang, W., Zhang, R., & Ni, Y. (2016). Carbonyl group-dependent high-throughput screening and enzymatic characterization of diaromatic ketone reductase. Catalysis Science & Technology, 6(16), 6320–6327.

    Article  CAS  Google Scholar 

  38. Zhou, J., Wang, Y., Xu, G., Wu, L., Han, R., Schwaneberg, U., Rao, Y., Zhao, Y., Zhou, J., & Ni, Y. (2018). Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a “Polar Gate” in Stereorecognition of Diaryl Ketones. Journal of the American Chemical Society, 140(39), 12645–12654.

    Article  CAS  Google Scholar 

  39. Ni, Y., Zhou, J., & Sun, Z. (2012). Production of a key chiral intermediate of Betahistine with a newly isolated Kluyveromyces sp. in an aqueous two-phase system. Process Biochemistry, 47(7), 1042–1048.

    Article  CAS  Google Scholar 

  40. Gaberc-Porekar, V., & Menart, V. (2001). Perspectives of immobilized-metal affinity chromatography. Journal of Biochemical and Biophysical Methods, 49(1-3), 335–360.

    Article  CAS  Google Scholar 

  41. Kohlmann, C., Leuchs, S., Greiner, L., & Leitnera, W. (2011). Continuous biocatalytic synthesis of (R)-2-octanol with integrated product separation. Green Chemistry, 13(6), 1430–1437.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program [2018YFA0901700], the National Natural Science Foundation of China [21907040, 21776112, 22077054], China Postdoctoral Science Foundation [2019 M651703], the National First-Class Discipline Program of Light Industry Technology and Engineering [LITE2018-07], and the Program of Introducing Talents of Discipline to Universities [111-2-06].

Author information

Authors and Affiliations

Authors

Contributions

Jieyu Zhou: Conceptualization, investigation, methodology, writing-original draft. Yanfei Wu: Data curation. Qingye Zhang: Data curation, formal analysis. Guochao Xu: Writing—review and editing. Ye Ni: Supervision, writing—review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to Ye Ni.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wu, Y., Zhang, Q. et al. Co-immobilized Alcohol Dehydrogenase and Glucose Dehydrogenase with Resin Extraction for Continuous Production of Chiral Diaryl Alcohol. Appl Biochem Biotechnol 193, 2742–2758 (2021). https://doi.org/10.1007/s12010-021-03561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03561-5

Keywords

Navigation