Log in

In Vitro Angiogenic Properties of Plasmid DNA Encoding SDF-1α and VEGF165 Genes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The stromal-derived factor-1 alpha (SDF-1α) and vascular endothelial growth factor (VEGF) play an important role in angiogenesis and exert a significant trophic function. SDF-1α is a chemoattractant for endothelial progenitor cells derived from bone marrow and promotes new blood vessel formation. VEGF regulates all types of vascular growth, stimulates angiogenesis, and is involved in the induction of lymphangiogenesis. The possibility of using these growth factors for regenerative medicine is currently under investigation. The angiogenic potential of a pBud-SDF-1α-VEGF165 bicistronic plasmid construct which simultaneously encodes VEGF165 and SDF-1α genes cDNA was evaluated in this study. The conditioned medium collected from HEK293T cells transfected with the pBud-SDF-1α-VEGF165 plasmid was shown to stimulate the formation of capillary-like structures by human umbilical vein-derived endothelial cells (HUVEC) on Matrigel and to increase the proliferative activity of these cells in vitro. Thus, the pBud-SDF-1α-VEGF165 plasmid exhibits angiogenic properties in cell cultures in vitro. As interest in the development of non-viral techniques for regenerative medicine increases, this plasmid which simultaneously expresses VEGF165 and SDF-1α may provide a platform for advanced methods of stimulating therapeutic angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ouma, G. O., Jonas, R. A., Usman, M. H., & Mohler, E. R., 3rd. (2012). Targets and delivery methods for therapeutic angiogenesis in peripheral artery disease. Vascular Medicine, 17(3), 174–192.

    PubMed  Google Scholar 

  2. Yla-Herttuala, S., Rissanen, T. T., Vajanto, I., & Hartikainen, J. (2007). Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 49(10), 1015–1026.

    PubMed  Google Scholar 

  3. Bulgin, D. (2015). Therapeutic Angiogenesis in Ischemic Tissues by Growth Factors and Bone Marrow Mononuclear Cells Administration: Biological Foundation and Clinical Prospects. Current Stem Cell Research & Therapy, 10(6), 509–522.

    CAS  Google Scholar 

  4. Takeshita, S., Zheng, L. P., Brogi, E., Kearney, M., Pu, L. Q., Bunting, S., Ferrara, N., Symes, J. F., & Isner, J. M. (1994). Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. The Journal of Clinical Investigation, 93(2), 662–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bauters, C., Asahara, T., Zheng, L. P., Takeshita, S., Bunting, S., Ferrara, N., Symes, J. F., & Isner, J. M. (1995). Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. Journal of Vascular Surgery, 21(2), 314–324 discussion 324-315.

    CAS  PubMed  Google Scholar 

  6. Zisa, D., Shabbir, A., Mastri, M., Suzuki, G., & Lee, T. (2009). Intramuscular VEGF repairs the failing heart: role of host-derived growth factors and mobilization of progenitor cells. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 297(5), R1503–R1515.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sato, K., Laham, R. J., Pearlman, J. D., Novicki, D., Sellke, F. W., Simons, M., & Post, M. J. (2000). Efficacy of intracoronary versus intravenous FGF-2 in a pig model of chronic myocardial ischemia. The Annals of Thoracic Surgery, 70(6), 2113–2118.

    CAS  PubMed  Google Scholar 

  8. Efthimiadou, A., Asimakopoulos, B., Nikolettos, N., Giatromanolaki, A., Sivridis, E., Papachristou, D. N., & Kontoleon, E. (2006). Angiogenic effect of intramuscular administration of basic and acidic fibroblast growth factor on skeletal muscles and influence of exercise on muscle angiogenesis. British Journal of Sports Medicine, 40(1), 35–39 discussion 35-39.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Morishita, R., Nakamura, S., Hayashi, S., Taniyama, Y., Moriguchi, A., Nagano, T., Taiji, M., Noguchi, H., Takeshita, S., Matsumoto, K., Nakamura, T., Higaki, J., & Ogihara, T. (1999). Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension, 33(6), 1379–1384.

    CAS  PubMed  Google Scholar 

  10. Li, W. W., Talcott, K. E., Zhai, A. W., Kruger, E. A., & Li, V. W. (2005). The role of therapeutic angiogenesis in tissue repair and regeneration. Advances in Skin & Wound Care, 18(9), 491–500 quiz 501-492.

    Google Scholar 

  11. Takeshita, S., Pu, L. Q., Stein, L. A., Sniderman, A. D., Bunting, S., Ferrara, N., Isner, J. M., & Symes, J. F. (1994). Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation, 90(5 Pt 2), II228–II234.

    CAS  PubMed  Google Scholar 

  12. Becit, N., Ceviz, M., Kocak, H., Yekeler, I., Unlu, Y., Celenk, C., & Akin, Y. (2001). The effect of vascular endothelial growth factor on angiogenesis: an experimental study. European Journal of Vascular and Endovascular Surgery : The Official Journal of the European Society for Vascular Surgery, 22(4), 310–316.

    CAS  Google Scholar 

  13. Pearlman, J. D., Hibberd, M. G., Chuang, M. L., Harada, K., Lopez, J. J., Gladstone, S. R., Friedman, M., Sellke, F. W., & Simons, M. (1995). Magnetic resonance map** demonstrates benefits of VEGF-induced myocardial angiogenesis. Nature Medicine, 1(10), 1085–1089.

    CAS  PubMed  Google Scholar 

  14. Kottakis, F., Polytarchou, C., Foltopoulou, P., Sanidas, I., Kampranis, S. C., & Tsichlis, P. N. (2011). FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Molecular Cell, 43(2), 285–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Laham, R. J., Rezaee, M., Post, M., Sellke, F. W., Braeckman, R. A., Hung, D., & Simons, M. (1999). Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 27(7), 821–826.

    CAS  Google Scholar 

  16. Lazarous, D. F., Shou, M., Stiber, J. A., Dadhania, D. M., Thirumurti, V., Hodge, E., & Unger, E. F. (1997). Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovascular Research, 36(1), 78–85.

    CAS  PubMed  Google Scholar 

  17. Deepa, K., Rodionov, R. N., Weiss, N., & Parani, M. (2013). Transgenic expression and functional characterization of human platelet derived growth factor BB (hPDGF-BB) in tobacco (Nicotiana tabacum L.). Applied Biochemistry and Biotechnology, 171(6), 1390–1404.

    CAS  PubMed  Google Scholar 

  18. Choi, J. H., Kim, S., Sapkota, K., Park, S. E., & Kim, S. J. (2011). Expression and production of therapeutic recombinant human platelet-derived growth factor-BB in Pleurotus eryngii. Applied Biochemistry and Biotechnology, 165(2), 611–623.

    CAS  PubMed  Google Scholar 

  19. Yang, F., Xue, F., Guan, J., Zhang, Z., Yin, J., & Kang, Q. (2018). Stromal-Cell-Derived Factor (SDF) 1-Alpha Overexpression Promotes Bone Regeneration by Osteogenesis and Angiogenesis in Osteonecrosis of the Femoral Head. Cellular Physiology and Biochemistry, 46(6), 2561–2575.

    CAS  PubMed  Google Scholar 

  20. Deshane, J., Chen, S., Caballero, S., Grochot-Przeczek, A., Was, H., Li Calzi, S., Lach, R., Hock, T. D., Chen, B., Hill-Kapturczak, N., Siegal, G. P., Dulak, J., Jozkowicz, A., Grant, M. B., & Agarwal, A. (2007). Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. The Journal of Experimental Medicine, 204(3), 605–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, J. X., Huang, X. F., Lv, W. M., Ye, C. S., Peng, X. Z., Zhang, H., **ao, L. B., & Wang, S. M. (2009). Combination of stromal-derived factor- 1alpha and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. Journal of Vascular Surgery, 50(3), 608–616.

    PubMed  Google Scholar 

  22. Ho, T. K., Tsui, J., Xu, S., Leoni, P., Abraham, D. J., & Baker, D. M. (2010). Angiogenic effects of stromal cell-derived factor-1 (SDF-1/CXCL12) variants in vitro and the in vivo expressions of CXCL12 variants and CXCR4 in human critical leg ischemia. Journal of Vascular Surgery, 51(3), 689–699.

    PubMed  Google Scholar 

  23. Gorenoi, V., Brehm, M. U., Koch, A., & Hagen, A. (2017). Growth factors for angiogenesis in peripheral arterial disease. Cochrane Database of Systematic Reviews, (6), CD011741.

  24. Inampudi, C., Akintoye, E., Ando, T., & Briasoulis, A. (2018). Angiogenesis in peripheral arterial disease. Current Opinion in Pharmacology, 39, 60–67.

    CAS  PubMed  Google Scholar 

  25. King, A., Balaji, S., Keswani, S. G., & Crombleholme, T. M. (2014). The Role of Stem Cells in Wound Angiogenesis. Advances in Wound Care, 3(10), 614–625.

    PubMed  PubMed Central  Google Scholar 

  26. Hou, L., Kim, J. J., Woo, Y. J., & Huang, N. F. (2016). Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. American Journal of Physiology. Heart and Circulatory Physiology, 310(4), H455–H465.

    PubMed  Google Scholar 

  27. Solovyeva, V. V., Blatt, N. L., Shafigullina, A. K., & Rizvanov, A. A. (2012). Endogenous secretion of vascular endothelial growth factor by multipotent mesenchymal stromal cells derived from human third molar dental follicles. Cellular Transplantation and Tissue Engineering, 7(3), 155–158.

    Google Scholar 

  28. Fierro, F. A., Magner, N., Beegle, J., Dahlenburg, H., Logan White, J., Zhou, P., Pepper, K., Fury, B., Coleal-Bergum, D. P., Bauer, G., Gruenloh, W., Annett, G., Pifer, C., & Nolta, J. A. (2018). Mesenchymal stem/stromal cells genetically engineered to produce vascular endothelial growth factor for revascularization in wound healing and ischemic conditions. Transfusion.

  29. Bortolotti, F., Ukovich, L., Razban, V., Martinelli, V., Ruozi, G., Pelos, B., Dore, F., Giacca, M., & Zacchigna, S. (2015). In vivo therapeutic potential of mesenchymal stromal cells depends on the source and the isolation procedure. Stem Cell Reports, 4(3), 332–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Raval, Z., & Losordo, D. W. (2013). Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circulation Research, 112(9), 1288–1302.

    CAS  PubMed  Google Scholar 

  31. Sanada, F., Taniyama, Y., Kanbara, Y., Otsu, R., Ikeda-Iwabu, Y., Carracedo, M., Rakugi, H., & Morishita, R. (2015). Gene therapy in peripheral artery disease. Expert Opinion on Biological Therapy, 15(3), 381–390.

    CAS  PubMed  Google Scholar 

  32. Yla-Herttuala, S., & Baker, A. H. (2017). Cardiovascular Gene Therapy: Past, Present, and Future. Molecular Therapy, 25(5), 1095–1106.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Walder, C. E., Errett, C. J., Bunting, S., Lindquist, P., Ogez, J. R., Heinsohn, H. G., Ferrara, N., & Thomas, G. R. (1996). Vascular endothelial growth factor augments muscle blood flow and function in a rabbit model of chronic hindlimb ischemia. Journal of Cardiovascular Pharmacology, 27(1), 91–98.

    CAS  PubMed  Google Scholar 

  34. Chervyakov, Y. V., Staroverov, I. N., Vlasenko, O. N., Bozo, I. Y., Isaev, A. A., & Deev, R. V. (2016). Five-year results of treating patients with chronic lower limb ischaemia by means of gene engineering. Angiol Sosud Khir, 22(4), 38–44.

    PubMed  Google Scholar 

  35. Kalinin, R. E., Suchkov, I. A., Deev, R. V., Mzhavanadze, N. D., & Krylov, A. A. (2018). Gene-mediated induction of angiogenesis in inoperable patients with atherosclerosis and diabetes mellitus. Angiol Sosud Khir, 24(2), 33–40.

    CAS  PubMed  Google Scholar 

  36. Luo, R., Lu, Y., Liu, J., Cheng, J., & Chen, Y. (2019). Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 109, 2022–2034.

    CAS  Google Scholar 

  37. Stewart, D. J., Hilton, J. D., Arnold, J. M., Gregoire, J., Rivard, A., Archer, S. L., Charbonneau, F., Cohen, E., Curtis, M., Buller, C. E., Mendelsohn, F. O., Dib, N., Page, P., Ducas, J., Plante, S., Sullivan, J., Macko, J., Rasmussen, C., Kessler, P. D., & Rasmussen, H. S. (2006). Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Therapy, 13(21), 1503–1511.

    CAS  PubMed  Google Scholar 

  38. Niebuhr, A., Henry, T., Goldman, J., Baumgartner, I., van Belle, E., Gerss, J., Hirsch, A. T., & Nikol, S. (2012). Long-term safety of intramuscular gene transfer of non-viral FGF1 for peripheral artery disease. Gene Therapy, 19(3), 264–270.

    CAS  PubMed  Google Scholar 

  39. Shigematsu, H., Yasuda, K., Sasajima, T., Takano, T., Miyata, T., Ohta, T., Tanemoto, K., Obitsu, Y., Iwai, T., Ozaki, S., Ogihara, T., Morishita, R., & Group, H. G. F. S. (2011). Transfection of human HGF plasmid DNA improves limb salvage in Buerger's disease patients with critical limb ischemia. International Angiology : a Journal of the International Union of Angiology, 30(2), 140–149.

    CAS  Google Scholar 

  40. Lebas, B., Galley, J., Renaud-Gabardos, E., Pujol, F., Lenfant, F., Garmy-Susini, B., Chaufour, X., & Prats, A. C. (2017). Therapeutic Benefits and Adverse Effects of Combined Proangiogenic Gene Therapy in Mouse Critical Leg Ischemia. Annals of Vascular Surgery, 40, 252–261.

    PubMed  Google Scholar 

  41. Garanina, E. E., Mukhamedshina, Y. O., Salafutdinov, I. I., Kiyasov, A. P., Lima, L. M., Reis, H. J., Palotas, A., Islamov, R. R., & Rizvanov, A. A. (2016). Construction of recombinant adenovirus containing picorna-viral 2A-peptide sequence for the co-expression of neuro-protective growth factors in human umbilical cord blood cells. Spinal Cord, 54(6), 423–430.

    CAS  PubMed  Google Scholar 

  42. Zhuravleva, M. N., Khaliullin, M. R., Masgutov, R. F., Deev, R. V., & Rizvanov, A. A. (2017). Recombinant Plasmid DNA Construct Encoding Combination of vegf165 and bmp2 cDNAs Stimulates Osteogenesis and Angiogenesis In Vitro. Bionanoscience, 7(2), 288–293.

    Google Scholar 

  43. Solovyeva, V. V., Salafutdinov, I. I., Tazetdinova, L. G., Masgutov, R. F., Khaiboullina, S. F., & Rizvanov, A. A. (2014). Genetic Modification of Adipose Derived Stem Cells with Recombinant Plasmid DNA pBud-VEGF-FGF2 Results in Increased of IL-8 and MCP-1 Secretion. Journal of Pure and Applied Microbiology, 8(Spl. Edn. 2), 523–528.

    Google Scholar 

  44. Khaiboullina, S. F., Rizvanov, A. A., Deyde, V. M., & St Jeor, S. C. (2005). Andes virus stimulates interferon-inducible MxA protein expression in endothelial cells. Journal of Medical Virology, 75(2), 267–275.

    CAS  PubMed  Google Scholar 

  45. Solovyeva, V. V., Salafutdinov, I. I., Martynova, E. V., Khaiboullina, S. F., & Rizvanov, A. A. (2013). Human Adipose Derived Stem Cells Do Not Alter Cytokine Secretion in Response To The Genetic Modification With pEGFP-N2 Plasmid DNA. World Applied Sciences Journal, 26(7), 968–972.

    CAS  Google Scholar 

  46. Carpentier, G. (2012). Contribution: angiogenesis analyzer. ImageJ News, 5(Available: http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ.

  47. Apte, R. S., Chen, D. S., & Ferrara, N. (2019). VEGF in Signaling and Disease: Beyond Discovery and Development. Cell, 176(6), 1248–1264.

    CAS  PubMed  Google Scholar 

  48. Yue, X., & Tomanek, R. J. (2001). Effects of VEGF(165) and VEGF(121) on vasculogenesis and angiogenesis in cultured embryonic quail hearts. American Journal of Physiology. Heart and Circulatory Physiology, 280(5), H2240–H2247.

    CAS  PubMed  Google Scholar 

  49. Keyt, B. A., Berleau, L. T., Nguyen, H. V., Chen, H., Heinsohn, H., Vandlen, R., & Ferrara, N. (1996). The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. The Journal of Biological Chemistry, 271(13), 7788–7795.

    CAS  PubMed  Google Scholar 

  50. Neuhaus, T., Stier, S., Totzke, G., Gruenewald, E., Fronhoffs, S., Sachinidis, A., Vetter, H., & Ko, Y. D. (2003). Stromal cell-derived factor 1alpha (SDF-1alpha) induces gene-expression of early growth response-1 (Egr-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell Proliferation, 36(2), 75–86.

    CAS  PubMed  Google Scholar 

  51. Zheng, H., Fu, G., Dai, T., & Huang, H. (2007). Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. Journal of Cardiovascular Pharmacology, 50(3), 274–280.

    CAS  PubMed  Google Scholar 

  52. Inouye, S., Sahara-Miura, Y., Sato, J., & Suzuki, T. (2015). Codon optimization of genes for efficient protein expression in mammalian cells by selection of only preferred human codons. Protein Expression and Purification, 109, 47–54.

    CAS  PubMed  Google Scholar 

  53. Solovyeva, V. V., Kiyasov, A. P. and Rizvanov, A. A. (2016). Genetically Engineered Dental Stem Cells for Regenerative Medicine. Stem Cells Biol Reg, 93–107.

  54. Serra, J., Alves, C. P. A., Brito, L., Monteiro, G. A., Cabral, J. M. S., Prazeres, D. M. F., & da Silva, C. L. (2019). Engineering of Human Mesenchymal Stem/Stromal Cells with Vascular Endothelial Growth Factor-Encoding Minicircles for Angiogenic Ex Vivo Gene Therapy. Human Gene Therapy, 30(3), 316–329.

    CAS  PubMed  Google Scholar 

  55. Hojati, Z., & Dehghanian, F. (2015). Enhanced expression of bioactive recombinant VEGF-111 with insertion of intronic sequence in mammalian cell lines. Applied Biochemistry and Biotechnology, 175(8), 3737–3749.

    CAS  PubMed  Google Scholar 

  56. Tang, J., Wang, J., Yang, J., Kong, X., Zheng, F., Guo, L., Zhang, L., & Huang, Y. (2009). Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. European Journal of Cardio-Thoracic Surgery : Official Journal of the European Association for Cardio-Thoracic Surgery, 36(4), 644–650.

    Google Scholar 

  57. Zhang, L., Zhou, Y., Sun, X., Zhou, J., & Yang, P. (2017). CXCL12 overexpression promotes the angiogenesis potential of periodontal ligament stem cells. Scientific Reports, 7(1), 10286.

    PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

The work was funded by the Human Stem Cells Institute and performed according to the Russian Government Program of Competitive Growth of the Kazan Federal University. AR was supported by the state assignment 20.5175.2017/6.7 of the Ministry of Education and Science of the Russian Federation and the President of the Russian Federation grant НШ-3076.2018.4. IS and VS were supported by the Russian Foundation for Basic Research grant 16-04-01567.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert A. Rizvanov.

Ethics declarations

The protocol was approved by the Biomedicine Ethics Expert Committee of the Kazan Federal University (No. 3, 23.03.2017). Written informed consent was obtained from the donors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyeva, V.V., Chulpanova, D.S., Tazetdinova, L.G. et al. In Vitro Angiogenic Properties of Plasmid DNA Encoding SDF-1α and VEGF165 Genes. Appl Biochem Biotechnol 190, 773–788 (2020). https://doi.org/10.1007/s12010-019-03128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03128-5

Keywords

Navigation