Log in

The Pro-Apoptotic Activity of Tamarixetin on Liver Cancer Cells Via Regulation Mitochondrial Apoptotic Pathway

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Based on the various pharmacological activities of tamarixetin, the present study investigated the cytotoxicity property of tamarixetin in human liver cancer cells including PLC/PRF/5 and HepG2 cells, and their xenografted tumor nude mice. In cells, tamarixetin incubation resulted in the suppression on cell viability; enhanced cell apoptosis rate, LDH release, caspase-3 activation, and reactive oxygen species accumulation; and decreased mitochondrial membrane potential in a dose-dependent manner. Tamarixetin inhibited the growth of PLC/PRF/5- and HepG2-xenografted tumors in BALB/c nude mice after 14-day administration without influencing their bodyweights and organ functions including liver and spleen. Tamarixetin enhanced the expression levels of pro-apoptotic proteins including Bax and cleaved caspase-3 and inhibited the expression levels of anti-apoptotic proteins including Bcl-2 and Bcl-xL in liver cancer cells and their xenografted tumor tissues. Furthermore, tamarixetin significantly suppressed the phosphorylation of ERKs and AKT in both PLC/PRF/5 and HepG2 cells, and tumor tissues. All present data suggest that tamarixetin displays pro-apoptotic properties in liver cancer cells related to the mitochondria apoptotic pathway via regulating the ERKs and AKT signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

All data generated and analyzed during the present study are included in this published article.

Abbreviations

AKT:

Protein kinase B

Bax:

Bcl-2-associated X protein

Bcl-2:

B cell lymphoma 2

Bcl-xL:

B cell lymphoma-extra large

BSA:

Bovine serum albumin

DCFH-DA:

2,7-dichlorofluorescein diacetate

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

ERKs:

Extracellular signal-regulated kinases

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide

LDH:

Lactate dehydrogenase

MAPKs:

Mitogen-activated protein kinases

MMP:

Mitochondrial membrane potential

MPTP:

Mitochondrial permeability transition pores

MTT:

3-(4,5)-dimethylthiahiazo(−z-y1)-3,5-di-pheny-tetrazoliumromide

RIPA:

Radio Immunoprecipitation Assay

ROS:

Reactive oxygen species

TBS-T:

Tris-buffered saline-Tween

References

  1. Llovet, J. M., Burroughs, A., & Bruix, J. (2003). Hepatocellular carcinoma. Lancet, 362(9399), 1907–1917.

    Article  PubMed  Google Scholar 

  2. Jia, Z., Yang, H. H., Liu, Y. J., & Wang, X. Z. (2018). Synthetic dibenzoxanthene derivatives induce apoptosis through mitochondrial pathway in human hepatocellular cancer cells. Applied Biochemistry and Biotechnology, 186(1), 145–160.

    Article  CAS  PubMed  Google Scholar 

  3. Li, C. J., Huang, S. Y., Wu, M. Y., Chen, Y. C., Tsang, S. F., Chyuan, J. H., & Hsu, H. Y. (2012). Induction of apoptosis by ethanolic extract of Corchorus olitorius leaf in human hepatocellular carcinoma (HepG2) cells via a mitochondria-dependent pathway. Molecules, 17(8), 9348–9360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Y. M., Liu, Y. K., Lan, K. L., Lee, Y. W., Tsai, T. H., & Chen, Y. J. (2013). Medicinal fungus Antrodia cinnamomea inhibits growth and cancer stem cell characteristics of hepatocellular carcinoma. Evidence-based Complementary and Alternative Medicine, 2013, 569737.

    PubMed  PubMed Central  Google Scholar 

  5. Wang, D., Wong, H. K., Feng, Y. B., & Zhang, Z. J. (2014). 18beta-glycyrrhetinic acid induces apoptosis in pituitary adenoma cells via ROS/MAPKs-mediated pathway. Journal of Neuro-Oncology, 116(2), 221–230.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, D., Lu, J., Liu, Y., Meng, Q., **e, J., Wang, Z., & Teng, L. (2014). Liquiritigenin induces tumor cell death through mitogen-activated protein kinase- (MPAKs-) mediated pathway in hepatocellular carcinoma cells. BioMed Research International, 2014, 965316.

    PubMed  PubMed Central  Google Scholar 

  7. Dias, N., & Bailly, C. (2005). Drugs targeting mitochondrial functions to control tumor cell growth. Biochemical Pharmacology, 70(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  8. Jonas, E. (2006). BCL-xL regulates synaptic plasticity. Molecular Interventions, 6(4), 208–222.

    Article  CAS  PubMed  Google Scholar 

  9. Hu, K. H., Li, W. X., Sun, M. Y., Zhang, S. B., Fan, C. X., Wu, Q., Zhu, W., & Xu, X. (2015). Cadmium induced apoptosis in MG63 cells by increasing ROS, activation of p38 MAPK and inhibition of ERK 1/2 pathways. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 36, 642–654.

    Article  CAS  Google Scholar 

  10. Wang, D., Guo, T. Q., Wang, Z. Y., Lu, J. H., Liu, D. P., Meng, Q. F., **e, J., Zhang, X. L., Liu, Y., & Teng, L. S. (2014). ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 47, 773–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayamizu, K., Morimoto, S., Nonaka, M., Hoka, S., & Sasaguri, T. (2018). Cardiotonic actions of quercetin and its metabolite tamarixetin through a digitalis-like enhancement of Ca(2+) transients. Archives of Biochemistry and Biophysics, 637, 40–47.

    Article  CAS  PubMed  Google Scholar 

  12. Yadav, D. K., Bharitkar, Y. P., Hazra, A., Pal, U., Verma, S., Jana, S., Singh, U. P., Maiti, N. C., Mondal, N. B., & Swarnakar, S. (2017). Tamarixetin 3-O-beta-d-Glucopyranoside from Azadirachta indica leaves: Gastroprotective role through inhibition of matrix metalloproteinase-9 activity in mice. Journal of Natural Products, 80(5), 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  13. Park, H. J., Lee, S. J., Cho, J., Gharbi, A., Han, H. D., Kang, T. H., Kim, Y., Lee, Y., Park, W. S., Jung, I. D., & Park, Y. M. (2018). Tamarixetin exhibits anti-inflammatory activity and prevents bacterial sepsis by increasing IL-10 production. Journal of Natural Products, 81(6), 1435–1443.

    Article  CAS  PubMed  Google Scholar 

  14. Nicolini, F., Burmistrova, O., Marrero, M. T., Torres, F., Hernandez, C., Quintana, J., & Estevez, F. (2014). Induction of G2/M phase arrest and apoptosis by the flavonoid tamarixetin on human leukemia cells. Molecular Carcinogenesis, 53(12), 939–950.

    Article  CAS  PubMed  Google Scholar 

  15. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55–63.

    Article  CAS  PubMed  Google Scholar 

  16. Song, J., Wang, Y., Teng, M., Zhang, S., Yin, M., Lu, J., Liu, Y., Lee, R. J., Wang, D., & Teng, L. (2016). Cordyceps militaris induces tumor cell death via the caspasedependent mitochondrial pathway in HepG2 and MCF7 cells. Molecular Medicine Reports, 13(6), 5132–5140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, X., Chen, Y., Cai, G., Li, X., & Wang, D. (2017). Carnosic acid induces apoptosis of hepatocellular carcinoma cells via ROS-mediated mitochondrial pathway. Chemico-Biological Interactions, 277, 91–100.

    Article  CAS  PubMed  Google Scholar 

  18. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22(2), 153–183.

    CAS  PubMed  Google Scholar 

  19. Jose, G. M., Raghavankutty, M., & Kurup, G. M. (2018). Sulfated polysaccharides from Padina tetrastromatica induce apoptosis in HeLa cells through ROS triggered mitochondrial pathway. Process Biochemistry, 68, 197–204.

    Article  CAS  Google Scholar 

  20. Kang, J. H., Zhang, W. Q., Song, W., Shen, D. Y., Li, S. S., Tian, L., Shi, Y., Liang, G., **ong, Y. X., & Chen, Q. X. (2012). Apoptosis mechanism of human cholangiocarcinoma cells induced by bile extract from crocodile. Applied Biochemistry and Biotechnology, 166(4), 942–951.

    Article  CAS  PubMed  Google Scholar 

  21. Hippe, D., Gais, A., Gross, U., & Luder, C. G. (2009). Modulation of caspase activation by toxoplasma gondii. Methods in Molecular Biology, 470, 275–288.

    Article  CAS  PubMed  Google Scholar 

  22. Porter, A. G., & Janicke, R. U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation, 6(2), 99–104.

    Article  CAS  PubMed  Google Scholar 

  23. Ding, J., Mooers, B. H., Zhang, Z., Kale, J., Falcone, D., McNichol, J., Huang, B., Zhang, X. C., **ng, C., Andrews, D. W., & Lin, J. (2014). After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization. The Journal of Biological Chemistry, 289(17), 11873–11896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown, D. I., & Griendling, K. K. (2015). Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circulation Research, 116(3), 531–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Circu, M. L., & Aw, T. Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology & Medicine, 48(6), 749–762.

    Article  CAS  Google Scholar 

  26. Wang, H., & Xu, W. (2017). Mito-methyl coumarin, a novel mitochondria-targeted drug with great antitumor potential was synthesized. Biochemical and Biophysical Research Communications, 489(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, Y., Guo, C., Wang, L., Wang, S., Li, X., Jiang, B., Wu, N., Guo, S., Zhang, R., Liu, K., & Shi, D. (2017). A novel fluorinated thiosemicarbazone derivative- 2-(3,4-difluorobenzylidene) hydrazinecarbothioamide induces apoptosis in human A549 lung cancer cells via ROS-mediated mitochondria-dependent pathway. Biochemical and Biophysical Research Communications, 491(1), 65–71.

    Article  CAS  PubMed  Google Scholar 

  28. Sweatt, J. D. (2001). The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. Journal of Neurochemistry, 76(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  29. Krajarng, A., Nakamura, Y., Suksamrarn, S., & Watanapokasin, R. (2011). Alpha-Mangostin induces apoptosis in human chondrosarcoma cells through downregulation of ERK/JNK and Akt signaling pathway. Journal of Agricultural and Food Chemistry, 59(10), 5746–5754.

    Article  CAS  PubMed  Google Scholar 

  30. Tada, K., Kawahara, K., Matsushita, S., Hashiguchi, T., Maruyama, I., & Kanekura, T. (2012). MK615, a Prunus mume Steb. Et Zucc (‘Ume’) extract, attenuates the growth of A375 melanoma cells by inhibiting the ERK1/2-Id-1 pathway. Phytotherapy Research, 26(6), 833–838.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, Y., Shen, S., Guo, J., Chen, H., Greenblatt, D. Y., Kleeff, J., Liao, Q., Chen, G., Friess, H., & Leung, P. S. (2006). Mitogen-activated protein kinases and chemoresistance in pancreatic cancer cells. The Journal of Surgical Research, 136(2), 325–335.

    Article  CAS  PubMed  Google Scholar 

  32. Balmanno, K., & Cook, S. J. (2009). Tumour cell survival signalling by the ERK1/2 pathway. Cell Death and Differentiation, 16(3), 368–377.

    Article  CAS  PubMed  Google Scholar 

  33. **, Y., Yan, E. Z., Fan, Y., Guo, X. L., Zhao, Y. J., Zong, Z. H., & Liu, Z. (2007). Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and PI3 kinase pathways. Acta Pharmacologica Sinica, 28(12), 1881–1890.

    Article  CAS  PubMed  Google Scholar 

  34. Shao, M., He, Z., Yin, Z., Ma, P., **ao, Q., Song, Y., Huang, Z., Ma, Y., Qiu, Y., Zhao, A., Zhou, T., & Wang, Q. (2018). **huang pill induces apoptosis of human glioblastoma U-87 MG cells via targeting ROS-mediated Akt/mTOR/FOXO1 pathway. Evidence-based complementary and alternative medicine : eCAM, 2018, 6049498.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (NO. 81501420) and the Special Projects of Cooperation between Jilin University and Jilin Province in P. R. China (SXGJSF2017-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aofeng Wang or Zhaoli Meng.

Ethics declarations

Ethics Approval and Consent to Participate

The experimental animal study was approved by Jilin University (2017–0110).

Patient Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Cai, X., Teng, S. et al. The Pro-Apoptotic Activity of Tamarixetin on Liver Cancer Cells Via Regulation Mitochondrial Apoptotic Pathway. Appl Biochem Biotechnol 189, 647–660 (2019). https://doi.org/10.1007/s12010-019-03033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03033-x

Keywords

Navigation