Log in

Two Novel Acetylesterases from Pantoea dispersa: Recombinant Expression, Purification, and Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 03 July 2019

This article has been updated

Abstract

Two novel acetylesterases from Pantoea dispersa, with low amino acid sequence identity between them, were expressed in Escherichia coli with a carboxyl-His6 tail given by the expression plasmid, purified, and characterized. The purified proteins, named Est-1 and Est-2, had a molecular mass of 33 kDa and 37 kDa, respectively. Both proteins presented a modeled structure of homodimers with monomers presenting the α/β-hydrolase fold, with the catalytic triad Ser-Asp-His present in the active site. The KM for p-nitrophenyl acetate and Vmax values found for Est-1 were of 1.4 ± 0.2 mM and 8.66 ± 0.59 μmol/min and for Est-2 were of 0.36 ± 0.077 mM and 6.13 ± 0.56 μmol/min, respectively. Both enzymes presented an optimum pH of 7.0. The optimum temperature for Est-1 was 40 °C and for Est-2 was 50 °C. The temperatures in which the enzymes Est-1 and Est-2 lost half of their activity (T50) were 44.1 and 58.9 °C, respectively. SDS, EDTA, and PMSF significantly inhibited the enzymes. The two purified enzymes also presented activity against triacetin and were able to deacetylate the carbohydrates pectin and xylan, with higher activity against pectin. Thus, they could be considered as carbohydrate esterases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 03 July 2019

    The original version of this article unfortunately contained a mistake. Under Materials and Methods heading, Bacterial Strains sub-heading, the correct name of the used strain is “FEI4 65” and not “FzEI4 65.”

References

  1. Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2), 74. https://doi.org/10.1007/s13205-016-0485-8.

    Article  Google Scholar 

  2. Li, S., Yang, X., Yang, S., Zhu, M., & Wang, X. (2012). Technology prospecting on enzymes: application, marketing and engineering. Computational and Structural Biotechnology Journal, 2(3), e201209017. https://doi.org/10.5936/csbj.201209017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gurung, N., Ray, S., Bose, S., & Rai, V. (2013). A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International, 2013, 329121. https://doi.org/10.1155/2013/329121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: Tools for biotechnological processes. Biomolecules, 4(1), 117–139. https://doi.org/10.3390/biom4010117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13(4), 390–397. https://doi.org/10.1016/S0958-1669(02)00341-5.

    Article  CAS  PubMed  Google Scholar 

  6. Bornscheuer, U. T. (2002). Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiology Reviews, 26, 73–81. https://doi.org/10.1016/S0168-6445(01)00075-4.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma, T., Sharma, A., Sharma, S., & Kanwar, S. S. (2017). An overview on esterases: Structure, classification, sources and their application. In V. Rai (Ed.), Recent advances in biotechnology (Vol. 2, pp. 216–228). New Delhi: Shree Publishers & Distributors.

    Google Scholar 

  8. Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., & Soccol, V. T. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29(2), 119–131. https://doi.org/10.1111/j.1470-8744.1999.tb00541.x.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura, A. M., Nascimento, A. S., & Polikarpov, I. (2017). Structural diversity of carbohydrate esterases. Biotechnol Res Innov, 1(1), 35–51. https://doi.org/10.1016/j.biori.2017.02.001.

    Article  Google Scholar 

  10. Kameshwar, A. K. S., & Qin, W. (2018). Understanding the structural and functional properties of carbohydrate esterases with a special focus on hemicellulose deacetylating acetyl xylan esterases. Mycology, 9(4), 273–295. https://doi.org/10.1080/21501203.2018.1492979.

    Article  CAS  Google Scholar 

  11. Nardini, M., & Dijkstra, B. W. (1999). Alpha/beta hydrolase fold enzymes: the family keeps growing. Current Opinion in Structural Biology, 9(6), 732–737. https://doi.org/10.1016/S0959-440X(99)00037-8.

    Article  CAS  PubMed  Google Scholar 

  12. Santos, F.C., Castro, F. F., Apolonio, T. M., Yoshida, L., Martim, D. B., Tessmann, D. J., & Barbosa-Tessmann, I. P. Isolation, diversity, and biotechnological potential of maize (Zea mays L.) grains bacteria. Manuscript in preparation.

  13. Zhang, L., & Birch, R. G. (1997). The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomona salbilineans to sugarcane. Plant Biology, 94(18), 9984–9989. https://doi.org/10.1073/pnas.94.18.9984.

    Article  CAS  Google Scholar 

  14. Walterson, A. M., & Stavrinides, J. (2015). Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews, 39(6), 968–984. https://doi.org/10.1093/femsre/fuv027.

    Article  CAS  PubMed  Google Scholar 

  15. Kouker, G., & Jaeger, K. E. (1987). Specific and sensitive plate assay for bacterial lipases. Applied and Environmental Microbiology, 53(1), 211–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Meghji, K., Ward, O. P., & Araujo, A. (1990). Production, purification, and properties of extracellular carboxyl esterases from Bacillus subtilis NRRL 365. Applied and Environmental Microbiology, 56(12), 3735–3740.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haba, E., Bresco, O., Ferrer, C., Marqués, A., Busquets, M., & Manresa, A. (2000). Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme and Microbial Technology, 26(1), 40–44. https://doi.org/10.1016/S0141-0229(99)00125-8.

    Article  CAS  Google Scholar 

  18. Chen, J., Xu, L., Wu, Y., Tong, J., & Chen, Y. (2014). Production, characterization of acetyl esterase from a rumen bacteria strain RB3, and application potential of the strain in biodegradation of crop residues. Renewable Energy, 68, 134e139. https://doi.org/10.1016/j.renene.2014.01.033.

    Article  CAS  Google Scholar 

  19. Winkler, U. K., & Stuckmann, M. (1979). Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138(3), 663–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung, C. T., Niemela, S. L., & Miller, R. H. (1989). One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A, 86(7), 2172–2175. https://doi.org/10.1073/pnas.86.7.2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (third ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  22. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  23. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 54, 5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3.

    Article  Google Scholar 

  24. DeLano, W. L. (2002). PyMOL, DeLano Scientific, San Carlos, CA.

  25. Saitou, N. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054.

    Article  CAS  PubMed  Google Scholar 

  27. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x.

    Article  Google Scholar 

  28. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A, 101(30), 11030–11035. https://doi.org/10.1073/pnas.0404206101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of dye-binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  30. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the 21 head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0.

    Article  CAS  Google Scholar 

  31. Tiwari, B. K., Muthukumarappan, K., O'Donnell, C. P., & Cullen, P. J. (2009). Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innovative Food Science and Emerging Technologies, 10(2), 166–171. https://doi.org/10.1016/j.ifset.2008.11.006.

    Article  CAS  Google Scholar 

  32. Talboys, P. W., & Busch, L. V. (2000). Pectic enzymes produced by Verticillium species. Transactions of the British Mycological Society, 55(3), 351–381. https://doi.org/10.1016/S0007-1536(70)80058-4.

    Article  Google Scholar 

  33. Sayali, K., Sadichha, P., & Surekha, S. (2013). Microbial esterases: an overview. International Journal of Current Microbiology and Applied Sciences, 2(7), 135–146 https://www.ijcmas.com/vol-2-7/Kulkarni%20Sayali,%20et%20al.pdf.

    Google Scholar 

  34. Borkar, P. S., Bodade, R. G., Rao, S. R., & Khobragade, C. N. (2009). Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9. Brazilian Journal of Microbiology, 40(2), 358–366. https://doi.org/10.1590/S1517-838220090002000028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramani, K., Chockalingam, E., & Sekaran, G. (2010). Production of a novel extracellular acidic lipase from Pseudomonas gessardii using slaughterhouse waste as a substrate. Journal of Industrial Microbiology & Biotechnology, 37(5), 531–535. https://doi.org/10.1007/s10295-010-0700-2.

    Article  CAS  Google Scholar 

  36. Shevchik, V. E., & Hugouvieux-Cotte-Pattat, N. (2003). PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937. Journal of Bacteriology, 185(10), 3091–3100. https://doi.org/10.1128/JB.185.10.3091-3100.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Millar, R., Rahmanpour, R., Yuan, E. W. J., White, C., & Bugg, T. D. H. (2017). Esterase EstK from Pseudomonas putida mt-2: an enantioselective acetylesterase with activity for deacetylation of xylan and poly(vinylacetate). Biotechnology and Applied Biochemistry, 64(6), 803–809. https://doi.org/10.1002/bab.1536.

    Article  CAS  PubMed  Google Scholar 

  38. Byun, J.-S., Rhee, J.-K., Kim, N. D., Yoon, J., Kim, D.-U., Koh, E., Oh, J.-W., & Cho, H.-S. (2007). Crystal structure of hyperthermophilic esterase Este1 and the relationship between its dimerization and thermostability properties. BMC Structural Biology, 7(1), 47S. https://doi.org/10.1186/1472-6807-7-47.

    Article  CAS  Google Scholar 

  39. Dou, S., Kong, X.-D., Ma, B.-D., Chen, Q., Zhang, J., Zhou, J., & Xu, J.-H. (2014). Crystal structures of Pseudomonas putida esterase reveal the functional role of residues 187 and 287 in substrate binding and chiral recognition. Biochemical and Biophysical Research Communications, 446(4), 1145–1150. https://doi.org/10.1016/j.bbrc.2014.03.072.

    Article  CAS  PubMed  Google Scholar 

  40. Joint Center for Structural Genomics (JCSG), Crystal structure of putative carboxylesterase (NP_786266.1) from Lactobacillus plantarum at 1.70 Å resolution, To be published.

  41. De Santi, C., Leiros, H.-K. S., Di Scala, A., de Pascale, D., Altermark, B., & Willassen, N.-P. (2016). Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp. Extremophiles, 20(3), 323–336. https://doi.org/10.1007/s00792-016-0824-z.

    Article  CAS  PubMed  Google Scholar 

  42. Eminoğlu, A., Ülker, S., & Sandallı, C. (2015). Cloning, purification and characterization of acetyl xylane esterase from Anoxybacillus flavithermus DSM 2641T with activity on low molecular-weight acetates. Protein Journal, 34(4), 237–242. https://doi.org/10.1007/s10930-015-9618-x.

    Article  CAS  PubMed  Google Scholar 

  43. Kakugawa, S., Fushinobu, S., Wakagi, T., & Shoun, H. (2007). Characterization of a thermostable carboxylesterase from the hyperthermophilic bacterium Thermotoga maritima. Applied Microbiology and Biotechnology, 74(3), 585–591. https://doi.org/10.1007/s00253-006-0687-9.

    Article  CAS  PubMed  Google Scholar 

  44. Schair, H.-P., Gygax, D., Tombo, G. M. R., & Ghisalba, O. (1988). Purification and properties of an acetyl specific carboxylesterase from Nocardia mediterranei. Applied Microbiology and Biotechnology, 27(5-6), 451–456. https://doi.org/10.1007/BF00451612.

    Article  Google Scholar 

  45. Lee, C. W., Kim, J., Hong, S., Goo, B., Lee, S., & Jang, S.-H. (2013). Cloning, expression, and characterization of a recombinant esterase from cold-adapted Pseudomonas mandelii. Applied Biochemistry and Biotechnology, 169(1), 29–40. https://doi.org/10.1007/s12010-012-9947-6.

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt, M., Henke, E., Heinze, B., Kourist, R., Hidalgo, A., & Bornscheuer, U. T. (2007). A versatile esterase from Bacillus subtilis: cloning, expression, characterization, and its application in biocatalysis. Biotechnology Journal, 2(2), 249–253. https://doi.org/10.1002/biot.200600174.

    Article  CAS  PubMed  Google Scholar 

  47. Shao, W., & Wiegel, J. (1995). Purification and characterization of two thermostable acetylxylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Applied and Environmental Microbiology, 61(2), 729–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chungool, W., Thongkam, W., Raweesri, P., Thamchaipenet, A., & Pinphanichakarn, P. (2008). Production, purification, and characterization of acetyl esterase from Streptomyces sp. PC22 and its action in cooperation with xylanolytic enzymes on xylan degradation. World Journal of Microbiology and Biotechnology, 24(4), 549–556. https://doi.org/10.1007/s11274-007-9509-1.

    Article  CAS  Google Scholar 

  49. Pesaresi, A., Devescovi, G., Lamba, D., Venturi, V., & Degrassi, G. (2005). Isolation, characterization, and heterologous expression of a carboxylesterase of Pseudomonas aeruginosa PAO1. Current Microbiology, 50(2), 102–109. https://doi.org/10.1007/s00284-004-4414-4.

    Article  CAS  PubMed  Google Scholar 

  50. Ejima, K., Liu, J., Oshima, Y., Hirooka, K., Shimanuki, S., Yokota, Y., Hemmi, H., Nakayama, T., & Nishino, T. (2004). Molecular cloning and characterization of a thermostable carboxylesterase from an archaeon, Sulfolobus shibatae DSM5389: non-linear kinetic behavior of a hormone-sensitive lipase family enzyme. Journal of Bioscience and Bioengineering, 98(6), 445–451. https://doi.org/10.1016/S1389-1723(05)00310-5.

    Article  CAS  PubMed  Google Scholar 

  51. Monti, D., Ferrandi, E. E., Righi, M., Romano, D., & Molinari, F. (2008). Purification and characterization of the enantioselective esterase from Kluyveromyces Marxianus CBS 1553. Journal of Biotechnology, 133(1), 65–72. https://doi.org/10.1016/j.jbiotec.2007.09.004.

    Article  CAS  PubMed  Google Scholar 

  52. Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., & Rascón-Chu, A. (2018). Pectin and pectin-based composite materials: beyond food texture. Molecules, 23(4), 942. https://doi.org/10.3390/molecules23040942.

    Article  CAS  PubMed Central  Google Scholar 

  53. Martínez-Martínez, I., Navarro-Fernández, J., Lozada-Ramírez, D. J., García-Carmona, F., & Sánchez-Ferrer, A. (2008). YesT: a new rhamnogalacturonan acetyl esterase from Bacillus subtilis. Proteins, 71(1), 379–388. https://doi.org/10.1002/prot.21705.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are thankful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) and to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for the Project funding (grant 001) and the scholarship given to D.B. Martim, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ione Parra Barbosa-Tessmann.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The original version of this article unfortunately contained a mistake. Under Materials and Methods heading, Bacterial Strains sub-heading, the correct name of the used strain is “FEI4 65” and not “FzEI4 65.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martim, D.B., Barbosa-Tessmann, I.P. Two Novel Acetylesterases from Pantoea dispersa: Recombinant Expression, Purification, and Characterization. Appl Biochem Biotechnol 189, 834–854 (2019). https://doi.org/10.1007/s12010-019-03024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03024-y

Keywords

Navigation