Log in

Bio-Functionalized Silver Nanoparticles: a Novel Colorimetric Probe for Cysteine Detection

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chemical interactions between nanoparticles and biomolecules are vital for applying nanoparticles in medicine and life science. Development of sensitive, rapid, low-cost, and eco-friendly sensors for the detection of molecules acting as disease indicator is need of an hour. In the present investigation, a green trend for silver nanoparticle synthesis was followed using leaf extract of Calotropis procera. Silver nanoparticles exhibited surface plasmon absorption peak at 421 nm, spherical shape with average size of 10 nm, and zeta potential of −22.4 mV. The as-synthesized silver nanoparticles were used for selective and sensitive detection of cysteine. Cysteine induces aggregation in stable silver nanoparticles owing to selective and strong interaction of –SH group of cysteine with silver nanoparticle surface. Cysteine-induced silver nanoparticle aggregation can be observed visually by change in color of silver nanoparticles from yellow to pink. Cysteine concentration was estimated colorimetrically by measuring absorption at surface plasmon wavelength. Limit of detection for cysteine using silver nanoparticles is ultralow, i.e., 100 nM. The mechanistic insight into cysteine detection by silver nanoparticles was investigated using FT-IR, TEM, DLS, and TLC analysis. Proposed method can be applied for the detection of cysteine in blood plasma and may give rise to a new insight into development of eco-friendly fabricated nanodiagnostic device in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wei, X., Qia, L., Tan, J., Liu, R., & Wang, F. (2010). Analytica Chimica Acta, 671, 80–84.

    Article  CAS  Google Scholar 

  2. Gazit, V., Ben-Abraham, R., Coleman, R., Weizman, A., & Katz, Y. (2004). Amino Acids, 26, 163–168.

    Article  CAS  Google Scholar 

  3. Shahrokhian, S. (2001). Analytical Chemistry, 73, 5972–5978.

    Article  CAS  Google Scholar 

  4. Jacob, C., Giles, G. I., Giles, N. M., & Sies, H. (2003). Angewandte Chemie International Edition, 42, 4742–4758.

    Article  CAS  Google Scholar 

  5. Chen, W., Kennedy, D. O., Kojima, A., & Matsui-Yuasa, I. (2000). Amino Acids, 18, 319–327.

    Article  CAS  Google Scholar 

  6. Nikiforova, V., Kempa, S., Zeh, M., Maimann, S., Kreft, O., Casazza, A. P., Riedel, K., Tauberger, E., Hoefgen, R., & Hesse, H. (2002). Amino Acids, 22, 259–278.

    Article  CAS  Google Scholar 

  7. Moreira, P. I., Harris, P. L. R., Zhu, X. W., Santos, M. S., Oliveira, C. R., Smith, M. A., & Perry, G. (2007). Journal of Alzheimer’s Disease, 12, 195–206.

    CAS  Google Scholar 

  8. Wang, W., Rusin, O., Xu, X., Kim, K. K., Escobedo, J. O., Fakayode, S. O., Fletcher, K. A., Lowry, M., Schowalter, C. M., Lawrence, C. M., Fronczek, F. R., Warner, I. M., & Strongin, R. M. (2005). Journal of the American Chemical Society, 127, 15949–15958.

    Article  CAS  Google Scholar 

  9. Droge, W., & Holm, E. (1997). The Journal of Federation of American Society for Experimental Biology, 11, 1077–1089.

    CAS  Google Scholar 

  10. The Research Council of Norway. “Obesity: Cysteine plays a key role: Amino acid may be at root of obesity.” Science Daily. 14 June 2011. www.sciencedaily.com/releases/2011/06/110614095649.htm.

  11. Li, L., & Li, B. (2009). Analyst, 134, 1361–1365.

    Article  CAS  Google Scholar 

  12. Tcherkas, Y. V., & Denisenko, A. D. (2001). Journal of Chromatography A., 913, 309–313.

    Article  CAS  Google Scholar 

  13. Leung, K. H., He, H. Z., Ma, V. P. Y., Chan, D. S. H., Leung, C. H., & Ma, D. L. (2013). Chemical Communications, 49, 771–773.

    Article  CAS  Google Scholar 

  14. Chand, R., Han, D. W., Islam, K., Yeon, I. J., Ko, S. S., & Kim, Y. S. (2013). Advanced Materials Research, 647, 482–486.

    Article  Google Scholar 

  15. Vieira, I. C., & Fatibello-Filho, O. (1999). Analytica Chimica Acta, 399, 287–293.

    Article  CAS  Google Scholar 

  16. Lin, M., Pei, H., Yang, F., Fan, C., & Zuo, X. (2013). Advanced Materials, 25, 3490–3496.

    Article  CAS  Google Scholar 

  17. Brede, C., & Labhasetwar, V. (2013). Advances in Chronic Kidney Disease, 20, 454–465.

    Article  Google Scholar 

  18. Borase, H. P., Patil, C. D., Salunkhe, R. B., Suryawanshi, R. K., Salunke, B. K., & Patil, S. V. (2014). Bioprocess Biosystems Engineering, 37(11), 2223–33.

    Article  CAS  Google Scholar 

  19. Rohit, J. V., & Kailasa, S. K. (2014). Analytical Methods, 6, 5934–5941.

    Article  CAS  Google Scholar 

  20. Borase, H. P., Patil, C. D., Salunkhe, R. B., Suryawanshi, R. K., Salunke, B. K., & Patil, S. V. (2014). Biotechnology and Applied Biochemistry. doi:10.1002/bab.1306.

    Google Scholar 

  21. Serra, A., Filippo, E., Re, M., Palmisano, M., Vittori-Antisari, M., Buccolieri, A., & Manno, D. (2009). Nanotechnology, 165501, 1–7.

    Google Scholar 

  22. Borase, H. P., Salunke, B. K., Salunkhe, R. B., Patil, C. D., Hallsworth, J. E., Kim, B. S., & Patil, S. V. (2014). Applied Biochemistry and Biotechnology, 173, 1–29.

    Article  CAS  Google Scholar 

  23. Wang, J., Li, Y. F., Huang, C. Z., & Wu, T. (2008). Analytica Chimica Acta, 626, 37–43.

    Article  CAS  Google Scholar 

  24. Han, C., Xu, K., Liu, Q., Liu, X., & Li, J. (2014). Sensors and Actuators B, 202, 574–582.

    Article  CAS  Google Scholar 

  25. Ravindran, A., Mani, V., Chandrasekaran, N., & Mukherjee, A. (2011). Talanta, 85, 533–540.

    Article  CAS  Google Scholar 

  26. Prasad, G. (1985). Journal of National Integrated Medical Association, 27, 7–10.

    Google Scholar 

  27. Dieye, A. M., Tidjani, M. A., Diouf, A., Bassene, E., & Faye, B. (1993). Dakar Med, 38, 69–72.

    CAS  Google Scholar 

  28. Jain, P. K., Verma, R., Kumar, N., & Kumar, A. (1985). Journal of Research in Ayurveda and Sidha, 6, 88–91.

    Google Scholar 

  29. Samy, R. P., Rajendran, P., Li, F., Anandi, N. M., Stiles, B. G., Ignacimuthu, S., Sethi, G., & Chow, V. T. (2007). PLoS ONE, e48514, 1–14.

    Google Scholar 

  30. Kakkar, A., Verma, D. R., Suryavanshi, S., & Dubey, P. (2012). Chemistry of Natural Compound, 48, 155–157.

    Article  CAS  Google Scholar 

  31. Moustafa, A. M., Ahmed, S. H., Nabil, Z. I., Hussein, A. A., & Omran, M. A. (2010). Pharmaceutical Biology, 48, 1080–1090.

    Article  CAS  Google Scholar 

  32. Chaplin, M. F. (1976). Biochemical Journal, 155, 457–459.

    CAS  Google Scholar 

  33. Haiss, W., Thanh, N. T. K., Aveyard, J., & Fernig, D. G. (2007). Analytical Chemistry, 79, 4215–4221.

    Article  CAS  Google Scholar 

  34. Martínez, J. C., Chequer, N. A., González, J. L., & Cordova, T. (2012). Journal of Nanoscience and Nanotechnology, 2, 184–189.

    Article  Google Scholar 

  35. Valodkar, M., Jadeja, R. N., Thounaojam, M. C., Devkar, R. V., & Thakore, S. (2011). Materials Science and Engineering C, 31, 1723–1728.

    Article  CAS  Google Scholar 

  36. Baker, D. H., & Czarnecki-Maulden, G. L. (1987). Journal of Nutrition, 117, 1003–1010.

    CAS  Google Scholar 

  37. Uvdal, K., Bodo, P., & Liedberg, B. J. (1992). Journal of Colloid and Interface Science, 149, 162–173.

    Article  CAS  Google Scholar 

  38. Aryal, S., Remant, B. K. C., Dharmaraj, N., Bhattarai, N., Kim, C. H., & Kim, H. Y. (2006). Spectrochimica Acta A, 63, 160–163.

    Article  Google Scholar 

  39. Qian, Q., Deng, J., Wang, D., Yang, L., Yu, P., & Mao, X. (2012). Analytical Chemistry, 84, 9579–9584.

    Article  CAS  Google Scholar 

  40. Chen, Z., Luo, S., Liu, C., & Cai, Q. (2009). Analytical and Bioanalytical Chemistry, 395, 489–494.

    Article  CAS  Google Scholar 

  41. Zhang, F. X., Han, L., Israel, L. B., Daras, J. G., Maye, M. M., Ly, N. K., & Zhong, C. J. (2002). Analyst, 127, 462–465.

    Article  CAS  Google Scholar 

  42. Bahram, M., & Mohammadzadeh, E. (2014). Analytical Methods, 6, 6916–6924.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Present research was supported by the Department of Science and Technology, Government of India, under the DST INSPIRE Ph.D. fellowship to Mr. Hemant P. Borase. Authors are thankful to anonymous reviewers for critical evaluation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary 1

Eppendorf tubes showing interaction of amino acids with silver nanoparticles(1- Silver nanoparticles, 2- Cysteine, 3-alanine, 4-arginine, 5- methionine, 6-asparagine, 7-aspartic acid, 8-glutamine, 9-glutamic acid, 10-glycine, 11-histidine, 12-isoleucine, 13-leucine, 14-lysine, 15-phenylalanine, 16-proline, 17-serine, 18-threonine, 19-tryptophan, 20-tyrosine, 21-valine). (JPEG 1026 kb)

Supplementary 2

Parameters studied during cysteine detection using bio functionalized silver nanoparticles. (DOCX 13 kb)

Supplementary 3

TLC analysis of 1. cysteine, 2. Silver nanoparticles and 3. cysteine- silver nanoparticles complex. The develo** system is Butanol: Acetic acid: Water (4:1:5). (JPEG 610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borase, H.P., Patil, C.D., Salunkhe, R.B. et al. Bio-Functionalized Silver Nanoparticles: a Novel Colorimetric Probe for Cysteine Detection. Appl Biochem Biotechnol 175, 3479–3493 (2015). https://doi.org/10.1007/s12010-015-1519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1519-0

Keywords

Navigation