Log in

Sustainable development in cold gas dynamic spray coating process for biomedical applications: challenges and future perspective review

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This review article specifically focuses on today’s cutting-edge technology i.e., the cold gas dynamic spray coating process, which is a relatively new technique in the field of orthopedics and antibacterial coatings. Cold gas dynamic spray coating (CGDS) has many advantages over conventional high-temperature processes, such as cost-effectiveness, suitability for oxygen-sensitive materials, and sustainable environmentally-friendly properties and functionality. Powdered form feedstock material is used in this process and accelerated supersonically onto the appropriate substrate without melting. The deposition of pure ceramic deposits, such as hydroxyapatite, remains a challenge. Therefore, the authors attempt to analyze more than 100 design, experimental, numerical, and statistical-based case studies which include the challenges and future perspective of the cold gas dynamic spray coating process for biomedical applications. Further, an inclusive evaluation is carried out related to bio-implants and the development and optimization of thermal spray coatings, with a focus on the emerging CGDS coating systems for orthopedics and antibacterial purposes. By analyzing the process parameters involved in CGDS, this review intends to provide insights into the critical factors affecting the quality and properties of the coatings produced, including substrate preparation, powder characteristics, spraying conditions, and post-treatment. The results of this review could help researchers optimize the CS technique to produce more reliable and efficient bio-implants, with improved biocompatibility and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liao, T.Y., Biesiekierski, A., Berndt, C.C., et al.: Multifunctional cold spray coatings for biological and biomedical applications: A review. Prog. Surf. Sci. 97, 100654 (2022). https://doi.org/10.1016/J.PROGSURF.2022.100654

    Article  Google Scholar 

  2. Kumar, S.: Influence of processing conditions on the mechanical, tribological and fatigue performance of cold spray coating: A review. 38:324–365. (2022). https://doi.org/10.1080/02670844.2022.2073424

  3. Hench, L.L.: Biomaterials: A forecast for the future. Biomaterials. 19, 1419–1423 (1998). https://doi.org/10.1016/S0142-9612(98)00133-1

    Article  Google Scholar 

  4. Ratner, B.D., Hoffman, A.S., Schoen, F.J., et al.: Introduction to Biomaterials Science: An Evolving, Multidisciplinary Endeavor. Academic Press Cambridge, MA, USA (2020)

    Book  Google Scholar 

  5. Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.W.: Biomedical applications of polymer-composite materials: A review. Compos. Sci. Technol. 61, 1189–1224 (2001). https://doi.org/10.1016/S0266-3538(00)00241-4

    Article  Google Scholar 

  6. Katti, K.S.: Biomaterials in total joint replacement. Colloids Surf., B. 39, 133–142 (2004). https://doi.org/10.1016/J.COLSURFB.2003.12.002

    Article  Google Scholar 

  7. Bauer, S., Schmuki, P., von der Mark, K., Park, J.: Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog. Mater. Sci. 58, 261–326 (2013). https://doi.org/10.1016/J.PMATSCI.2012.09.001

    Article  Google Scholar 

  8. Liao, Z., Li, J., Su, Y., et al.: Antibacterial hydroxyapatite coatings on titanium dental implants. Frontiers of Materials Science 2023 17:1 17:1–17. (2023). https://doi.org/10.1007/S11706-023-0628-X

  9. Lv, Y., Chen, Y., Zheng, Y., et al.: Evaluation of the antibacterial properties and in-vitro cell compatibilities of doped copper oxide/hydroxyapatite composites. Colloids Surf., B. 209, 112194 (2022). https://doi.org/10.1016/J.COLSURFB.2021.112194

    Article  Google Scholar 

  10. Shanmugam, K., Doosthosseini, H., Varanasi, S., et al.: Flexible spray coating process for smooth nanocellulose film production. Cellulose. 25, 1725–1741 (2018). https://doi.org/10.1007/S10570-018-1677-7/FIGURES/17

    Article  Google Scholar 

  11. Singh, N., Batra, U., Kumar, K., et al.: Progress in bioactive surface coatings on biodegradable mg alloys: A critical review towards clinical translation. Bioactive Mater. 19, 717–757 (2023). https://doi.org/10.1016/J.BIOACTMAT.2022.05.009

    Article  Google Scholar 

  12. Atiq Ur Rehman, M., Bastan, F.E., Haider, B., Boccaccini, A.R.: Electrophoretic deposition of PEEK/bioactive glass composite coatings for orthopedic implants: A design of experiments (DoE) study. Mater. Design. 130, 223–230 (2017). https://doi.org/10.1016/J.MATDES.2017.05.045

    Article  Google Scholar 

  13. Cizek, J., Matejicek, J.: Medicine meets Thermal Spray Technology: A review of patents. J. Therm. Spray Technol. 27, 1251–1279 (2018). https://doi.org/10.1007/S11666-018-0798-8/FIGURES/20

    Article  Google Scholar 

  14. Vardelle, A., Moreau, C., Akedo, J., et al.: The 2016 Thermal Spray Roadmap. J. Therm. Spray Technol. 2016. 25, 8 (2016). https://doi.org/10.1007/S11666-016-0473-X

    Article  Google Scholar 

  15. Tejero-Martin, D., Rezvani Rad, M., McDonald, A., Hussain, T.: Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings. J. Therm. Spray Technol. 2019. 28(4), 598–644 (2019). https://doi.org/10.1007/S11666-019-00857-1

    Article  Google Scholar 

  16. Vilardell, A.M., Cinca, N., Concustell, A., et al.: Cold spray as an emerging technology for biocompatible and antibacterial coatings: State of art. J. Mater. Sci. 50, 4441–4462 (2015). https://doi.org/10.1007/S10853-015-9013-1/TABLES/7

    Article  Google Scholar 

  17. Rokni, M.R., Nutt, S.R., Widener, C.A., et al.: Review of Relationship between particle deformation, Coating Microstructure, and Properties in high-pressure Cold Spray. J. Therm. Spray Technol. 2017. 26(6), 1308–1355 (2017). https://doi.org/10.1007/S11666-017-0575-0

    Article  Google Scholar 

  18. Sun, W., Chu, X., Lan, H., et al.: Current implementation status of Cold Spray Technology: A short review. J. Therm. Spray Technol. 31, 848–865 (2022). https://doi.org/10.1007/S11666-022-01382-4/FIGURES/17

    Article  Google Scholar 

  19. Govande, A.R., Chandak, A., Sunil, B.R., Dumpala, R.: Carbide-based thermal spray coatings: A review on performance characteristics and post-treatment. Int. J. Refract. Met. Hard Mater. 103, 105772 (2022). https://doi.org/10.1016/J.IJRMHM.2021.105772

    Article  Google Scholar 

  20. Sharma, V., Kazi, S.: An investigation on D-gun sprayed Al2O3-SiC coatings. Surf. Coat. Technol. 375, 303–314 (2019). https://doi.org/10.1016/J.SURFCOAT.2019.07.021

    Article  Google Scholar 

  21. Sharma, R.K., Das, R.K., Kumar, S.R.: Microstructure, mechanical and tribological properties of high velocity oxy fuel thermal spray coating: A review. Materialwiss. Werkstofftech. 54, 90–97 (2023). https://doi.org/10.1002/MAWE.202200101

    Article  Google Scholar 

  22. Kuroda, S., Kawakita, J., Watanabe, M., Katanoda, H.: Warm spraying—a novel coating process based on high-velocity impact of solid particles. http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tsta20#VmBmuzZFCUk 9:17. (2008). https://doi.org/10.1088/1468-6996/9/3/033002

  23. Kawakita, J., Katanoda, H., Watanabe, M., et al.: Warm spraying: An improved spray process to deposit novel coatings. Surf. Coat. Technol. 202, 4369–4373 (2008). https://doi.org/10.1016/J.SURFCOAT.2008.04.011

    Article  Google Scholar 

  24. Tikkanen, J., Gross, K.A., Berndt, C.C., et al.: Characteristics of the liquid flame spray process. Surf. Coat. Technol. 90, 210–216 (1997). https://doi.org/10.1016/S0257-8972(96)03153-2

    Article  Google Scholar 

  25. Wagner, N.: Effect of process parameters on Twin Wire Arc Sprayed Steel Coatings. J. Mater. Eng. Perform. 30, 6650–6655 (2021). https://doi.org/10.1007/S11665-021-05941-8/FIGURES/9

    Article  Google Scholar 

  26. Gedzevicius, I., Valiulis, A.V.: Analysis of wire arc spraying process variables on coatings properties. J. Mater. Process. Technol. 175, 206–211 (2006). https://doi.org/10.1016/J.JMATPROTEC.2005.04.019

    Article  Google Scholar 

  27. Viscusi, A., Astarita, A., Gatta, R., Della, Rubino, F.: A perspective review on the bonding mechanisms in cold gas dynamic spray. 35:743–771. (2018). https://doi.org/10.1080/02670844.2018.1551768

  28. Lupoi, R., O’Neill, W.: Powder stream characteristics in cold spray nozzles. Surf. Coat. Technol. 206, 1069–1076 (2011). https://doi.org/10.1016/J.SURFCOAT.2011.07.061

    Article  Google Scholar 

  29. Irissou, E., Legoux, J.G., Ryabinin, A.N., et al.: Review on cold spray process and technology: Part I - intellectual property. J. Therm. Spray Technol. 17, 495–516 (2008). https://doi.org/10.1007/S11666-008-9203-3/FIGURES/23

    Article  Google Scholar 

  30. Singh, H., Sidhu, T.S., Kalsi, S.B.S., Karthikeyan, J.: Development of cold spray from innovation to emerging future coating technology. J. Brazilian Soc. Mech. Sci. Eng. 35, 231–245 (2013). https://doi.org/10.1007/S40430-013-0030-1/FIGURES/15

    Article  Google Scholar 

  31. Singh, S., Raman, R.K.S., Berndt, C.C., Singh, H.: Influence of Cold Spray Parameters on Bonding Mechanisms. Rev. Met. 2021. 11 (2021). Page 2016 11:2016 https://doi.org/10.3390/MET11122016

  32. Jodoin, B.: Cold spray nozzle mach number limitation. J. Therm. Spray Technol. 11, 496–507 (2002). https://doi.org/10.1361/105996302770348628/METRICS

    Article  Google Scholar 

  33. Góral, A., Żórawski, W., Makrenek, M.: The effect of the standoff distance on the microstructure and mechanical properties of cold sprayed Cr3C2-25(Ni20Cr) coatings. Surf. Coat. Technol. 361, 9–18 (2019). https://doi.org/10.1016/J.SURFCOAT.2019.01.006

    Article  Google Scholar 

  34. Gabor, T., Akin, S., Tsai, J.T., et al.: Numerical Studies on Cold Spray Particle Deposition Using a Rectangular Nozzle. Proceedings of ASME 2022 17th International Manufacturing Science and Engineering Conference, MSEC 2022 1:. (2022). https://doi.org/10.1115/MSEC2022-85673

  35. Li, S., Muddle, B., Jahedi, M., Soria, J.: A numerical investigation of the cold spray process using underexpanded and overexpanded jets. J. Therm. Spray Technol. 21, 108–120 (2012). https://doi.org/10.1007/S11666-011-9691-4/FIGURES/15

    Article  Google Scholar 

  36. Yin, S., Suo, X., Liao, H., et al.: Significant influence of carrier gas temperature during the cold spray process. https://doi.org/101179/1743294414Y0000000276 30:443–450. (2014). https://doi.org/10.1179/1743294414Y.0000000276

  37. Kamaraj, M., Radhakrishnan, V.M.: Cold Spray Coating Diagram: Bonding Properties and Construction Methodology. J. Therm. Spray Technol. 28, 756–768 (2019). https://doi.org/10.1007/S11666-019-00853-5/FIGURES/8

    Article  Google Scholar 

  38. Raoelison, R.N., **e, Y., Sapanathan, T., et al.: Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date. Additive Manuf. 19, 134–159 (2018). https://doi.org/10.1016/J.ADDMA.2017.07.001

    Article  Google Scholar 

  39. Singh, S., Singh, H., Chaudhary, S., Buddu, R.K.: Effect of substrate surface roughness on properties of cold-sprayed copper coatings on SS316L steel. Surf. Coat. Technol. 389, 125619 (2020). https://doi.org/10.1016/J.SURFCOAT.2020.125619

    Article  Google Scholar 

  40. Jodoin, B., Ajdelsztajn, L., Sansoucy, E., et al.: Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings. Surf. Coat. Technol. 201, 3422–3429 (2006). https://doi.org/10.1016/J.SURFCOAT.2006.07.232

    Article  Google Scholar 

  41. Ziemian, C.W., Wright, W.J., Cipoletti, D.E.: Influence of Impact Conditions on Feedstock Deposition Behavior of Cold-Sprayed Fe-Based metallic glass. J. Therm. Spray Technol. 27, 843–856 (2018). https://doi.org/10.1007/S11666-018-0720-4/FIGURES/18

    Article  Google Scholar 

  42. Bhattiprolu, V.S., Johnson, K.W., Ozdemir, O.C., Crawford, G.A.: Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions. Surf. Coat. Technol. 335, 1–12 (2018). https://doi.org/10.1016/J.SURFCOAT.2017.12.014

    Article  Google Scholar 

  43. Sandhu, H.S., Phull, G.S., Saini, M.S., et al.: A Review: Bio-compatible thermal spray coating on bio-implant. Lecture Notes in Mechanical Engineering. 71–77 (2021). https://doi.org/10.1007/978-981-16-1079-0_8/COVER

  44. Adebiyi, D.I., Popoola, A.P.I., Botef, I.: Low pressure cold spray coating of Ti-6Al-4V with SiC-based cermet. Mater. Lett. 175, 63–67 (2016). https://doi.org/10.1016/J.MATLET.2016.03.142

    Article  Google Scholar 

  45. MacDonald, D., Fernández, R., Delloro, F., Jodoin, B.: Cold Spraying of Armstrong process Titanium Powder for Additive Manufacturing. J. Therm. Spray Technol. 26, 598–609 (2017). https://doi.org/10.1007/S11666-016-0489-2/FIGURES/11

    Article  Google Scholar 

  46. Raha, S., Mallick, R., Basak, S., Duttaroy, A.K.: Is copper beneficial for COVID-19 patients? Med. Hypotheses. 142, 109814 (2020). https://doi.org/10.1016/J.MEHY.2020.109814

    Article  Google Scholar 

  47. Tang, J.R., Zhao, Z.P., Cui, X.Y., et al.: Microstructure and bioactivity of a cold sprayed rough/porous Ta coating on Ti6Al4V substrate. Sci. China Technological Sci. 63, 731–739 (2020). https://doi.org/10.1007/S11431-019-1446-0/METRICS

    Article  Google Scholar 

  48. Zeng, G., Zahiri, S.H., Gulizia, S., et al.: A comparative study of cell growth on a cold sprayed Ti–Ta composite. J. Alloys Compd. 826, 154014 (2020). https://doi.org/10.1016/J.JALLCOM.2020.154014

    Article  Google Scholar 

  49. Soro, N., Attar, H., Brodie, E., et al.: Evaluation of the mechanical compatibility of additively manufactured porous Ti–25Ta alloy for load-bearing implant applications. J. Mech. Behav. Biomed. Mater. 97, 149–158 (2019). https://doi.org/10.1016/J.JMBBM.2019.05.019

    Article  Google Scholar 

  50. Tang, J., Zhao, Z., Li, N., et al.: Influence of feedstock powder on microstructure and mechanical properties of Ta cold spray depositions. Surf. Coat. Technol. 377, 124903 (2019). https://doi.org/10.1016/J.SURFCOAT.2019.124903

    Article  Google Scholar 

  51. Al-Mangour, B., Mongrain, R., Irissou, E., Yue, S.: Improving the strength and corrosion resistance of 316L stainless steel for biomedical applications using cold spray. Surf. Coat. Technol. 216, 297–307 (2013). https://doi.org/10.1016/J.SURFCOAT.2012.11.061

    Article  Google Scholar 

  52. Goyal, K., Goyal, R.: Improving hot corrosion resistance of Cr3C2–20NiCr coatings with CNT reinforcements. (2019). 36:1200–1209. https://doi.org/10.1080/02670844.2019.1662645

  53. Sova, A., Papyrin, A., Smurov, I.: Influence of ceramic powder size on process of cermet coating formation by cold spray. J. Therm. Spray Technol. 18, 633–641 (2009). https://doi.org/10.1007/S11666-009-9359-5/TABLES/3

    Article  Google Scholar 

  54. Guillem-Marti, J., Cinca, N., Punset, M., et al.: Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids Surf., B. 180, 245–253 (2019). https://doi.org/10.1016/J.COLSURFB.2019.04.048

    Article  Google Scholar 

  55. Tang, J., Zhao, Z., Liu, H., et al.: A novel bioactive Ta/hydroxyapatite composite coating fabricated by cold spraying. Mater. Lett. 250, 197–201 (2019). https://doi.org/10.1016/J.MATLET.2019.04.123

    Article  Google Scholar 

  56. Lee, J.H., Jang, H.L., Lee, K.M., et al.: Cold-spray coating of hydroxyapatite on a three-dimensional polyetheretherketone implant and its biocompatibility evaluated by in vitro and in vivo minipig model. J. Biomedical Mater. Res. Part B: Appl. Biomaterials. 105, 647–657 (2017). https://doi.org/10.1002/JBM.B.33589

    Article  Google Scholar 

  57. Hajipour, H., Abdollah-zadeh, A., Assadi, H., et al.: Effect of feedstock powder morphology on Cold-Sprayed Titanium Dioxide Coatings. J. Therm. Spray Technol. 27, 1542–1550 (2018). https://doi.org/10.1007/S11666-018-0782-3/FIGURES/10

    Article  Google Scholar 

  58. Khalik, M.A., Zahiri, S.H., Palanisamy, S., et al.: Rapid elimination of porosity and brittleness in cold spray additive manufactured grade 2 titanium via in situ electro-plastic treatment. Int. J. Adv. Manuf. Technol. 119, 773–788 (2022). https://doi.org/10.1007/S00170-021-08309-3/FIGURES/17

    Article  Google Scholar 

  59. Singh, G., Saini, A., Pabla, B.S.: Preparation and characterization of sr-doped hap biomedical coatings on polydopamine-treated ti6al4v substrates. 30:. (2022). https://doi.org/10.1142/S0218625X21410092

  60. Vilardell, A.M., Cinca, N., Garcia-Giralt, N., et al.: Osteoblastic cell response on high-rough titanium coatings by cold spray. J. Mater. Science: Mater. Med. 29, 1–10 (2018). https://doi.org/10.1007/S10856-018-6026-8/FIGURES/9

    Article  Google Scholar 

  61. Sun, J., Han, Y., Cui, K.: Innovative fabrication of porous titanium coating on titanium by cold spraying and vacuum sintering. Mater. Lett. 62, 3623–3625 (2008). https://doi.org/10.1016/J.MATLET.2008.04.011

    Article  Google Scholar 

  62. Stenson, C., McDonnell, K.A., Yin, S., et al.: Cold spray deposition to prevent fouling of polymer surfaces. 34:193–204. (2016). https://doi.org/10.1080/02670844.2016.1229833

  63. Koivuluoto, H., Näkki, J., Vuoristo, P.: Corrosion properties of cold-sprayed tantalum coatings. J. Therm. Spray Technol. 18, 75–82 (2009). https://doi.org/10.1007/S11666-008-9281-2/TABLES/3

    Article  Google Scholar 

  64. Gardon, M., Melero, H., Garcia-Giralt, N., et al.: Enhancing the bioactivity of polymeric implants by means of cold gas spray coatings. J. Biomedical Mater. Res. Part B: Appl. Biomaterials. 102, 1537–1543 (2014). https://doi.org/10.1002/JBM.B.33134

    Article  Google Scholar 

  65. Kusiński, J., Kac, S., Kowalski, K., et al.: Microstructure and Properties of TiC/Ti Coatings deposited by the Supersonic Cold gas spray technique. Archives of Metallurgy and Materials Vol. 63, 867–873 (2018). https://doi.org/10.24425/122416

    Article  Google Scholar 

  66. Zander, Z.K., Becker, M.L.: Antimicrobial and antifouling strategies for Polymeric Medical Devices. ACS Macro Lett. 7, 16–25 (2018). https://doi.org/10.1021/ACSMACROLETT.7B00879/ASSET/IMAGES/LARGE/MZ-2017-008792_0005.JPEG

    Article  Google Scholar 

  67. Aydin, H., Alomair, M., Wong, W., et al.: Cold sprayability of mixed commercial purity Ti Plus Ti6Al4V Metal powders. J. Therm. Spray Technol. 26, 360–370 (2017). https://doi.org/10.1007/S11666-017-0528-7/FIGURES/14

    Article  Google Scholar 

  68. Gkomoza, P., Lampropoulos, G.S., Vardavoulias, M., et al.: Microstructural investigation of porous titanium coatings, produced by thermal spraying techniques, using plasma atomization and hydride-dehydride powders, for orthopedic implants. Surf. Coat. Technol. 357, 947–956 (2019). https://doi.org/10.1016/J.SURFCOAT.2018.10.072

    Article  Google Scholar 

  69. Wang, Z., Chen, X., Gong, Y., et al.: Superhydrophobic nanocoatings prepared by a novel vacuum cold spray process. Surf. Coat. Technol. 325, 52–57 (2017). https://doi.org/10.1016/J.SURFCOAT.2017.06.044

    Article  Google Scholar 

  70. Niinomi, M.: Recent progress in Research and Development of Metallic Structural Biomaterials with mainly focusing on mechanical biocompatibility. Mater. Trans. 59, 1–13 (2018). https://doi.org/10.2320/MATERTRANS.M2017180

    Article  Google Scholar 

  71. Rui, D., Li, X., Jia, W., et al.: Releasing kinetics of dissolved copper and antifouling mechanism of cold sprayed copper composite coatings for submarine screen doors of ships. J. Alloys Compd. 763, 525–537 (2018). https://doi.org/10.1016/J.JALLCOM.2018.05.355

    Article  Google Scholar 

  72. Apostu, D., Lucaciu, O., Berce, C., et al.: Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: A review. J. Int. Med. Res. 46, 2104–2119 (2018). https://doi.org/10.1177/0300060517732697

    Article  Google Scholar 

  73. Li, S., Ni, J., Liu, X., et al.: Surface characteristics and biocompatibility of sandblasted and acid-etched titanium surface modified by ultraviolet irradiation: An in vitro study. J. Biomedical Mater. Res. Part B: Appl. Biomaterials. 100B, 1587–1598 (2012). https://doi.org/10.1002/JBM.B.32727

    Article  Google Scholar 

  74. Hatamleh, M.M., Wu, X., Alnazzawi, A., et al.: Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments. Dent. Mater. 34, 676–683 (2018). https://doi.org/10.1016/J.DENTAL.2018.01.016

    Article  Google Scholar 

  75. Diba, F.S., Reynolds, N., Thissen, H., et al.: Tunable chemical and topographic patterns based on Binary Colloidal crystals (BCCs) to modulate MG63 cell growth. Adv. Funct. Mater. 29, 1904262 (2019). https://doi.org/10.1002/ADFM.201904262

    Article  Google Scholar 

  76. Yoon, B.J.V., Xavier, F., Walker, B.R., et al.: Optimizing surface characteristics for cell adhesion and proliferation on titanium plasma spray coatings on polyetheretherketone. Spine J. 16, 1238–1243 (2016). https://doi.org/10.1016/J.SPINEE.2016.05.017

    Article  Google Scholar 

  77. Walsh, W.R., Bertollo, N., Christou, C., et al.: Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface. Spine J. 15, 1041–1049 (2015). https://doi.org/10.1016/J.SPINEE.2014.12.018

    Article  Google Scholar 

  78. Vogel, D., Dempwolf, H., Baumann, A., Bader, R.: Characterization of thick titanium plasma spray coatings on PEEK materials used for medical implants and the influence on the mechanical properties. J. Mech. Behav. Biomed. Mater. 77, 600–608 (2018). https://doi.org/10.1016/J.JMBBM.2017.09.027

    Article  Google Scholar 

  79. Ma, R., Tang, T.: Current Strategies to Improve the Bioactivity of PEEK. International Journal of Molecular Sciences 2014, 15, 5426–5445 15:5426–5445. (2014). https://doi.org/10.3390/IJMS15045426

  80. Oliveira, W.F., Silva, P.M.S., Silva, R.C.S., et al.: Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J. Hosp. Infect. 98, 111–117 (2018)

    Article  Google Scholar 

  81. Arciola, C.R., Campoccia, D., Speziale, P., et al.: Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 33, 5967–5982 (2012). https://doi.org/10.1016/J.BIOMATERIALS.2012.05.031

    Article  Google Scholar 

  82. El-Eskandrany, M.S., Al-Azmi, A.: Potential applications of cold sprayed Cu50Ti20Ni30 metallic glassy alloy powders for antibacterial protective coating in medical and food sectors. J. Mech. Behav. Biomed. Mater. 56, 183–194 (2016). https://doi.org/10.1016/J.JMBBM.2015.11.030

    Article  Google Scholar 

  83. Suo, X., Abdoli, L., Liu, Y., et al.: Colonization of Bacteria on the Surfaces of Cold-Sprayed copper Coatings alters their Electrochemical Behaviors. J. Therm. Spray Technol. 26, 687–694 (2017). https://doi.org/10.1007/S11666-017-0535-8/FIGURES/7

    Article  Google Scholar 

  84. Zhao, Z., Meng, F., Tang, J., et al.: A novel method of fabricating an antibacterial aluminum-matrix composite coating doped graphene/silver-nanoparticles. Mater. Lett. 245, 211–214 (2019). https://doi.org/10.1016/J.MATLET.2019.02.121

    Article  Google Scholar 

  85. Wang, K., Wang, S., **ong, T., et al.: Properties of Zn-Al-Mg-TiO2 coating prepared by cold spraying. Surf. Coat. Technol. 387, 125549 (2020). https://doi.org/10.1016/J.SURFCOAT.2020.125549

    Article  Google Scholar 

  86. Costa, P., Polícia, R., Perinka, N., et al.: Multifunctional Touch Sensing and Antibacterial polymer-based Core-Shell Metallic Nanowire Composites for High Traffic Surfaces. Adv. Mater. Technol. 7, 2101575 (2022). https://doi.org/10.1002/ADMT.202101575

    Article  Google Scholar 

  87. Mishchenko, O., Filatova, V., Vasylyev, M., et al.: Kinetically Deposited Copper Antimicrobial Surfaces. Coatings 2019, 9, 257 9:257. (2019). https://doi.org/10.3390/COATINGS9040257

  88. Sundberg, K., Champagne, V., McNally, B., et al.: Effectiveness of nanomaterial copper cold spray surfaces on inactivation of influenza a virus. J. Biotechnol. Biomater. 5, 205 (2015)

    Google Scholar 

  89. Liu, Y., Dang, Z., Wang, Y., et al.: Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon. 67, 250–259 (2014). https://doi.org/10.1016/J.CARBON.2013.09.088

    Article  Google Scholar 

  90. Tamai, K., Kawate, K., Kawahara, I., et al.: Inorganic antimicrobial coating for titanium alloy and its effect on bacteria. J. Orthop. Sci. 14, 204–209 (2009). https://doi.org/10.1007/S00776-008-1306-7/METRICS

    Article  Google Scholar 

  91. Sanpo, N., Tharajak, J.: Antimicrobial Property of Cold-Sprayed transition Metals-Substituted Hydroxyapatite/PEEK coating. Appl. Mech. Mater. 866, 77–80 (2017). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.866.77

    Article  Google Scholar 

  92. Hutasoit, N., Kennedy, B., Hamilton, S., et al.: Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology. Manuf. Lett. 25, 93–97 (2020). https://doi.org/10.1016/J.MFGLET.2020.08.007

    Article  Google Scholar 

  93. Maan, A.M.C., Hofman, A.H., de Vos, W.M., Kamperman, M.: Recent developments and practical feasibility of polymer-based Antifouling Coatings. Adv. Funct. Mater. 30, 2000936 (2020). https://doi.org/10.1002/ADFM.202000936

    Article  Google Scholar 

  94. Dumée, L.F., He, L., King, P.C., et al.: Towards integrated anti-microbial capabilities: Novel bio-fouling resistant membranes by high velocity embedment of silver particles. J. Membr. Sci. 475, 552–561 (2015). https://doi.org/10.1016/J.MEMSCI.2014.10.051

    Article  Google Scholar 

  95. Khanmohammadi Chenab, K., Sohrabi, B., Rahmanzadeh, A.: Superhydrophobicity: Advanced biological and biomedical applications. Biomaterials Sci. 7, 3110–3137 (2019). https://doi.org/10.1039/C9BM00558G

    Article  Google Scholar 

  96. Gibas, A., Baszczuk, A., Jasiorski, M., Winnicki, M.: Prospects of low-pressure Cold Spray for Superhydrophobic Coatings. Coat. 2019. 9, 829 (2019). https://doi.org/10.3390/COATINGS9120829

    Article  Google Scholar 

  97. Moura, D., Souza, M.T., Liverani, L., et al.: Development of a bioactive glass-polymer composite for wound healing applications. Mater. Sci. Engineering: C. 76, 224–232 (2017). https://doi.org/10.1016/J.MSEC.2017.03.037

    Article  Google Scholar 

  98. Civantos, A., Martínez-Campos, E., Ramos, V., et al.: Titanium Coatings and Surface modifications: Toward clinically useful bioactive implants. ACS Biomaterials Science and Engineering. 3, 1245–1261 (2017). https://doi.org/10.1021/ACSBIOMATERIALS.6B00604/ASSET/IMAGES/MEDIUM/AB-2016-00604X_0006.GIF

    Article  Google Scholar 

  99. Moreau, D., Borit, F., Corté, L., Guipont, V.: Cold Spray Coating of Submicronic ceramic particles on poly(vinyl alcohol) in dry and Hydrogel States. J. Therm. Spray Technol. 26, 958–969 (2017). https://doi.org/10.1007/S11666-017-0551-8/FIGURES/12

    Article  Google Scholar 

  100. Vilardell, A.M., Cinca, N., Garcia-Giralt, N., et al.: In-vitro study of hierarchical structures: Anodic oxidation and alkaline treatments onto highly rough titanium cold gas spray coatings for biomedical applications. Mater. Sci. Engineering: C. 91, 589–596 (2018). https://doi.org/10.1016/J.MSEC.2018.05.071

    Article  Google Scholar 

  101. Manivasagam, G., Dhinasekaran, D., Rajamanickam, A.: Biomedical Implants: Corrosion and its Prevention - A Review. Recent Pat. Corros. Sci. 2, 40–54 (2010). https://doi.org/10.2174/1877610801002010040

    Article  Google Scholar 

  102. Deshpande, P.P., Jadhav, N.G., Gelling, V.J., Sazou, D.: Conducting polymers for corrosion protection: A review. J. Coat. Technol. Res. 11, 473–494 (2014). https://doi.org/10.1007/S11998-014-9586-7/FIGURES/4

    Article  Google Scholar 

  103. Arthur, D.E., Jonathan, A., Ameh, P.O., Anya, C.: A review on the assessment of polymeric materials used as corrosion inhibitor of metals and alloys. Int. J. Industrial Chem. 2013. 4(1 4), 1–9 (2013). https://doi.org/10.1186/2228-5547-4-2

    Article  Google Scholar 

  104. Kumar, S., Vidyasagar, V., Jyothirmayi, A., Joshi, S.V.: Effect of Heat Treatment on Mechanical Properties and Corrosion Performance of Cold-Sprayed Tantalum Coatings. J. Therm. Spray Technol. 25, 745–756 (2016). https://doi.org/10.1007/S11666-016-0388-6/TABLES/2

    Article  Google Scholar 

  105. Zhou, X., Mohanty, P.: Corrosion behaviour of cold sprayed titanium coatings in simulated body fluid. 47:145–154. (2013). https://doi.org/10.1179/1743278211Y.0000000037

  106. Dikici, B., Topuz, M.: Production of Annealed Cold-Sprayed 316L Stainless Steel Coatings for Biomedical Applications and their in-vitro corrosion response. Prot. Met. Phys. Chem. Surf. 54, 333–339 (2018). https://doi.org/10.1134/S2070205118020168/METRICS

    Article  Google Scholar 

  107. Cetiner, D., Paksoy, A.H., Tazegul, O., et al.: Thermal oxidation of Cold Sprayed Titanium-Based Coating deposited on Co-Cr Alloy. J. Therm. Spray Technol. 27, 1414–1427 (2018). https://doi.org/10.1007/S11666-018-0772-5/TABLES/2

    Article  Google Scholar 

  108. Bitar, D., Parvizi, J.: Biological response to prosthetic debris. World J. Orthop. 6, 172 (2015). https://doi.org/10.5312/WJO.V6.I2.172

    Article  Google Scholar 

  109. Radha, R., Sreekanth, D.: Insight of magnesium alloys and composites for orthopedic implant applications – a review. J. Magnesium Alloys. 5, 286–312 (2017). https://doi.org/10.1016/J.JMA.2017.08.003

    Article  Google Scholar 

  110. Yildiz, F., Yetim, A.F., Alsaran, A., Efeoglu, I.: Wear and corrosion behaviour of various surface treated medical grade titanium alloy in bio-simulated environment. Wear. 267, 695–701 (2009). https://doi.org/10.1016/J.WEAR.2009.01.056

    Article  Google Scholar 

  111. Ching, H.A., Choudhury, D., Nine, M.J., Abu Osman, N.A.: Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci. Technol. Adv. Mater. 15, 014402 (2014). https://doi.org/10.1088/1468-6996/15/1/014402

    Article  Google Scholar 

  112. Penkov, O.V., Khadem, M., Lee, J.S., et al.: Highly durable and biocompatible periodical Si/DLC nanocomposite coatings. Nanoscale. 10, 4852–4860 (2018). https://doi.org/10.1039/C7NR06762C

    Article  Google Scholar 

  113. Kheradmandfard, M., Kashani-Bozorg, S.F., Lee, J.S., et al.: Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal surface modification. J. Alloys Compd. 762, 941–949 (2018). https://doi.org/10.1016/J.JALLCOM.2018.05.088

    Article  Google Scholar 

  114. Yin, S., Chen, C., Suo, X., Lupoi, R.: Cold-Sprayed Metal Coatings with nanostructure. Adv. Mater. Sci. Eng. 2018 (2018). https://doi.org/10.1155/2018/2804576

  115. Spencer, K., Fabijanic, D.M., Zhang, M.X.: The influence of Al2O3 reinforcement on the properties of stainless steel cold spray coatings. Surf. Coat. Technol. 206, 3275–3282 (2012). https://doi.org/10.1016/J.SURFCOAT.2012.01.031

    Article  Google Scholar 

  116. Melendez, N.M., McDonald, A.G.: Development of WC-based metal matrix composite coatings using low-pressure cold gas dynamic spraying. Surf. Coat. Technol. 214, 101–109 (2013). https://doi.org/10.1016/J.SURFCOAT.2012.11.010

    Article  Google Scholar 

  117. Al-Hamdani, K.S., Murray, J.W., Hussain, T., et al.: Cold sprayed metal-ceramic coatings using satellited powders. Mater. Lett. 198, 184–187 (2017). https://doi.org/10.1016/J.MATLET.2017.03.175

    Article  Google Scholar 

Download references

Funding

The author(s) have received no funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ankit Sharma or Tarun Goyal.

Ethics declarations

Ethical concerns

Not Required.

Conflict of Interest

The author declares that no conflict of interest exists among all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhu, H.S., Goyal, D., Sharma, A. et al. Sustainable development in cold gas dynamic spray coating process for biomedical applications: challenges and future perspective review. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01474-7

Keywords

Navigation