Log in

Neural computing for erosion assessment in Al-20TiO2 HVOF thermal spray coating

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Stainless steel (SS) 316L is widely used for hydraulic machinery of ash disposal slurry pumps. In this work, the Al-20TiO2 coating powders were sprayed on SS316L materials using the HVOF technique. The various properties such as erosion resistance, microhardness, microstructure, roughness, etc. were tested during the experiments. A pot tester was used to examine the rate of erosion. At an impact angle of 60 degrees, Al-20TiO2 coatings were found to erode the most. The neural computing was performed by using the artificial neural network model (ANN). The present ANN model produced the Pearson coefficient (R) of 0.99903, 0.99301, and 0.99194 respectively for training, validation, and testing. The overall R-value of the model was found as 0.99686. Microscopically, Al-20TiO2 demonstrated semi-brittle erosion behavior. Craters and ductile fractures were the most common erosion wear mechanisms detected on the Al-20TiO2 coating, indicating that this material had semi-ductile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 5
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Singh, J., Singh, J.P., Singh, M., Szala, M.: Computational analysis of solid particle-erosion produced by bottom ash slurry in 90° elbow. MATEC Web Conf. 252, 04008 (2019). https://doi.org/0.1051/matecconf/201925204008

    Article  Google Scholar 

  2. Kumar, S., Singh, J., Mohapatra, S.K.: Influence of Particle Size on Leaching characteristic of fly ash. In: 15th International Conference on Environmental Science and Technology, 31 August to 2 September 2017. p. 01243., Rhodes, Greece (2017)

  3. Kumar, S., Singh, J., Mohapatra, S.K.: Role of particle size in assessment of physico-chemical properties and trace elements of indian fly ash. Waste Manag. Res. J. a Sustain. Circ. Econ. 36, 1016–1022 (2018). https://doi.org/10.1177/0734242X18804033

    Article  Google Scholar 

  4. Singh, J., Kumar, S., Gill, H.S.: Review on testing facilities assisting in development of numerical models for erosion calculation in centrifugal slurry pumps. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01282-z

    Article  Google Scholar 

  5. Singh, J., Kumar, S., Singh, J.P., Kumar, P., Mohapatra, S.K.: CFD modeling of erosion wear in pipe bend for the flow of bottom ash suspension. Part. Sci. Technol. 37, 275–285 (2019). https://doi.org/10.1080/02726351.2017.1364816

    Article  Google Scholar 

  6. **e, Y., Jiang, J.J., Tufa, K.Y., Yick, S.: Wear resistance of materials used for slurry transport. Wear. 1–7 (2015). https://doi.org/10.1016/j.wear.2015.01.005

  7. Singh, J.: Tribo-performance analysis of HVOF sprayed 86WC-10Co4Cr & Ni-Cr2O3 on AISI 316L steel using DOE-ANN methodology. Ind. Lubr Tribol. 73, 727–735 (2021). https://doi.org/10.1108/ILT-04-2020-0147

    Article  Google Scholar 

  8. Singh, J.: Wear performance analysis and characterization of HVOF deposited Ni–20Cr2O3, Ni–30Al2O3, and Al2O3–13TiO2 coatings. Appl. Surf. Sci. Adv. 6, 100161 (2021). https://doi.org/10.1016/j.apsadv.2021.100161

    Article  Google Scholar 

  9. Prashar, G., Vasudev, H., Thakur, L.: Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings: A review. Surf. Topogr Metrol. Prop. 9, 043002 (2021). https://doi.org/10.1088/2051-672X/ac3a52

    Article  Google Scholar 

  10. Jonda, E., Szala, M., Sroka, M., Łatka, L., Walczak, M.: Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying. Appl. Surf. Sci. 608, 155071 (2023). https://doi.org/10.1016/j.apsusc.2022.155071

    Article  Google Scholar 

  11. Szala, M., Łatka, L., Walczak, M., Winnicki, M.: Comparative study on the Cavitation Erosion and sliding wear of Cold-Sprayed Al/Al2O3 and Cu/Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, copper and brass. Met. (Basel). 10, 1–24 (2020). https://doi.org/10.3390/met10070856

    Article  Google Scholar 

  12. Mehta, A., Vasudev, H., Singh, S., Prakash, C., Saxena, K.K., Linul, E., Buddhi, D., Xu, J.: Processing and advancements in the development of thermal barrier coatings. Rev. Coat. 12, 1318 (2022)

    Google Scholar 

  13. Sahai, N., Saxena, K.K., Gupta, N., Garg, S., Bora, U., Baishya, U.J., Borah, V.: Designing & simulation of a lightweight hip implant stem: An FEM based approach. Adv. Mater. Process. Technol. 8, 1126–1134 (2022)

    Google Scholar 

  14. Tyagi, R., Das, A.K., Mandal, A., Saxena, K.K., Tripathi, A.: Hydrophobic properties and chemical state analysis of wear resistant coating prepared by electrical discharge process. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 09544089221099240 (2022)

  15. Szala, M., Awtoniuk, M., Łatka, L., Macek, W., Branco, R.: Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings. J. Phys. Conf. Ser. 1736, 012033 (2021). https://doi.org/10.1088/1742-6596/1736/1/012033

    Article  Google Scholar 

  16. Nowakowska, M., Łatka, L., Sokołowski, P., Szala, M., Toma, F.-L., Walczak, M.: Investigation into microstructure and mechanical properties effects on sliding wear and cavitation erosion of Al2O3–TiO2 coatings sprayed by APS, SPS and S-HVOF. Wear. 508–509 (2022). https://doi.org/10.1016/j.wear.2022.204462

  17. Tang, J., Saha, G.C., Richter, P., Kondás, J., Colella, A., Matteazzi, P.: Effects of Post-spray Heat treatment on hardness and wear Properties of Ti-WC high-pressure Cold Spray Coatings. J. Therm. Spray. Technol. 27, 1153–1164 (2018). https://doi.org/10.1007/s11666-018-0762-7

    Article  Google Scholar 

  18. Saladi, S., Ramana, P.V., Tailor, P.B.: Evaluation of Microstructural features of HVOF sprayed Ni–20Al Coatings. Trans. Indian Inst. Met. 71, 2387–2394 (2018). https://doi.org/10.1007/s12666-018-1369-x

    Article  Google Scholar 

  19. Becker, A., Fals, H.D.C., Roca, A.S., Siqueira, I.B.A.F., Caliari, F.R., da Cruz, J.R., Vaz, R.F., de Sousa, M.J., Pukasiewicz, A.G.M.: Artificial neural networks applied to the analysis of performance and wear resistance of binary coatings Cr3C237WC18M and WC20Cr3C27Ni. Wear. 477, 203797 (2021). https://doi.org/10.1016/j.wear.2021.203797

    Article  Google Scholar 

  20. Singh, J., Singh, S.: Support vector machine learning on slurry erosion characteristics analysis of Ni- and co-alloy coatings. Surf. Rev. Lett. (2023). https://doi.org/10.1142/S0218625X23400061

    Article  Google Scholar 

  21. Faheem, A., Tyagi, A., Hasan, F., Khan, A.A., Murtaza, Q., Saxena, K.K.: Residual stress investigation in the metallic coating approach of micro-sized particles on the substrate: Cold spray additive manufacturing. Adv. Mater. Process. Technol. 8, 4642–4658 (2022)

    Google Scholar 

  22. Singh, D., Goyal, A., Saini, A., Sonewane, S., Saxena, K.K.: Vibration and noise analysis of acetoxime modified TiO2 coating over steel alloy. Int. J. Interact. Des. Manuf. 1–9 (2022)

  23. Singh, J.: Analysis on suitability of HVOF sprayed Ni-20Al, Ni-20Cr and Al-20Ti coatings in coal-ash slurry conditions using artificial neural network model. Ind. Lubr Tribol. 71, 972–982 (2019). https://doi.org/10.1108/ILT-12-2018-0460

    Article  Google Scholar 

  24. Singh, J., Kumar, S., Mohapatra, S.K.: Tribological performance of Yttrium (III) and zirconium (IV) ceramics reinforced WC–10Co4Cr cermet powder HVOF thermally sprayed on X2CrNiMo-17-12-2 steel. Ceram. Int. 45, 23126–23142 (2019). https://doi.org/10.1016/j.ceramint.2019.08.007

    Article  Google Scholar 

  25. Singh, J., Kumar, S., Singh, G.: Taguchi’s Approach for optimization of Tribo-Resistance Parameters Forss304. Mater. Today Proc. 5, 5031–5038 (2018). https://doi.org/10.1016/j.matpr.2017.12.081

    Article  Google Scholar 

  26. Li, G.R., Lv, B.W., Yang, G.J., Zhang, W.X., Li, C.X., Li, C.J.: Relationship between Lamellar structure and Elastic Modulus of Thermally Sprayed Thermal Barrier Coatings with Intra-splat Cracks. J. Therm. Spray. Technol. 24, 1355–1367 (2015). https://doi.org/10.1007/s11666-015-0292-5

    Article  Google Scholar 

  27. Kumar, D., Yadav, R., Singh, J.: Evolution and adoption of microwave claddings in Modern Engineering Applications. In: Advances in Microwave Processing for Engineering Materials, pp. 134–153. CRC Press, Boca Raton (2022). https://doi.org/10.1201/9781003248743-8

    Chapter  Google Scholar 

  28. Buytoz, S., Ulutan, M., Islak, S., Kurt, B., Nuri Çelik, O.: Microstructural and wear characteristics of high velocity oxygen fuel (HVOF) sprayed NiCrBSi-SiC Composite Coating on SAE 1030 steel. Arab. J. Sci. Eng. 38, 1481–1491 (2013). https://doi.org/10.1007/s13369-013-0536-y

    Article  Google Scholar 

  29. Mehta, A., Vasudev, H., Singh, S.: Recent developments in the designing of deposition of thermal barrier coatings–A review. Mater. Today Proc. 26, 1336–1342 (2020)

    Article  Google Scholar 

  30. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Microstructural characterization and electrochemical corrosion behaviour of HVOF sprayed Alloy718-nanoAl 2 O 3 composite coatings. Surf. Topogr Metrol. Prop. 9, 035003 (2021). https://doi.org/10.1088/2051-672X/ac1044

    Article  Google Scholar 

  31. Vasudev, H., Thakur, L., Singh, H., Bansal, A.: Effect of addition of Al2O3 on the high-temperature solid particle erosion behaviour of HVOF sprayed Inconel-718 coatings. Mater. Today Commun. 30, 103017 (2022). https://doi.org/10.1016/j.mtcomm.2021.103017

    Article  Google Scholar 

  32. Prashar, G., Vasudev, H.: Structure-property correlation and high-temperature erosion performance of Inconel625-Al2O3 plasma-sprayed bimodal composite coatings. Surf Coat. Technol. 439, 128450 (2022). https://doi.org/10.1016/j.surfcoat.2022.128450

    Article  Google Scholar 

  33. Prashar, G., Vasudev, H.: High temperature erosion behavior of plasma sprayed Al 2 O 3 coating on AISI-304 stainless steel. World J. Eng. 18, 760–766 (2021). https://doi.org/10.1108/WJE-10-2020-0476

    Article  Google Scholar 

  34. Arora, H., Kumar, V., Prakash, C., Pimenov, D., Singh, M., Vasudev, H., Singh, V.: Analysis of sensitization in austenitic stainless steel-welded joint. In: Advances in Metrology and Measurement of Engineering Surfaces, pp. 13–23. Springer (2021)

  35. Szala, M., Szafran, M., Matijošius, J., Drozd, K.: Abrasive wear mechanisms of S235JR, S355J2, C45, AISI 304, and hardox 500 steels tested using Garnet, Corundum and Carborundum Abrasives. Adv. Sci. Technol. Res. J. 17, 147–160 (2023). https://doi.org/10.12913/22998624/161277

    Article  Google Scholar 

  36. Łatka, L., Szala, M., Nowakowska, M., Walczak, M., Kiełczawa, T., Sokołowski, P.: The effect of microstructure and mechanical properties on sliding wear and cavitation erosion of plasma coatings sprayed from Al2O3 + 40 wt% TiO2 agglomerated powders. Surf Coat. Technol. 455, 129180 (2023). https://doi.org/10.1016/j.surfcoat.2022.129180

    Article  Google Scholar 

  37. Singh, V., Kumar, S., Ratha, D.: Optimization of Al2O3 and TiO2 blends to be used as Erosion resistant coating for mild steel. J. Tribol. 142 (2020). https://doi.org/10.1115/1.4047896

  38. Prakash, G., Nath, S.K.: Studies on enhancement of silt erosion resistance of 13/4 martensitic stainless steel by low-temperature salt bath nitriding. J. Mater. Eng. Perform. 27, 3206–3216 (2018)

    Article  Google Scholar 

  39. Edlmayr, V., Moser, M., Walter, C., Mitterer, C.: Thermal stability of sputtered Al2O3 coatings. Surf Coat. Technol. 204, 1576–1581 (2010)

    Article  Google Scholar 

  40. Dong, S., Song, B., Hansz, B., Liao, H., Coddet, C.: Improvement in the microstructure and property of plasma sprayed metallic, alloy and ceramic coatings by pre-/during-treatment of dry-ice blasting. Surf Coat. Technol. 220, 199–203 (2013)

    Article  Google Scholar 

  41. Goyal, K.: Experimental investigations of mechanical properties and slurry erosion behaviour of high velocity oxy fuel and plasma sprayed Cr2O3–50%Al2O3 coatings on CA6NM turbine steel under hydro accelerated conditions. Tribol. - Mater. Surfaces Interfaces. 12, 97–106 (2018). https://doi.org/10.1080/17515831.2018.1452369

    Article  Google Scholar 

  42. Goyal, D.K., Singh, H., Kumar, H., Sahni, V.: Slurry erosive wear evaluation of HVOF-spray cr 2O 3 coating on some turbine steels. J. Therm. Spray. Technol. 21, 838–851 (2012). https://doi.org/10.1007/s11666-012-9795-5

    Article  Google Scholar 

  43. Sreenivasa Rao, K.V., Ramesh, C.S., Girisha, K.G., Rakesh, Y.D.: Slurry Erosive Wear Behavior of Plasma Sprayed Cr2O3 Coatings on Steel Substrates. Mater. Today Proc. 4, 10283–10287 (2017). https://doi.org/10.1016/j.matpr.2017.06.365

  44. Matikainen, V., Niemi, K., Koivuluoto, H., Vuoristo, P.: Abrasion, Erosion and cavitation Erosion wear Properties of Thermally Sprayed Alumina based Coatings. Coatings. 4, 18–36 (2014). https://doi.org/10.3390/coatings4010018

    Article  Google Scholar 

  45. Singh, V.P., Sil, A., Jayaganthan, R.: Tribological behaviour of nanostructured Al 2O 3 coatings. Surf. Eng. 28, 277–284 (2012). https://doi.org/10.1179/1743294411Y.0000000076

    Article  Google Scholar 

  46. Singh, J., Singh, S.: Neural network supported study on erosive wear performance analysis of Y2O3/WC-10Co4Cr HVOF coating. J. King Saud Univ. - Eng. Sci. (2022). https://doi.org/10.1016/j.jksues.2021.12.005

    Article  Google Scholar 

  47. Singh, J., Singh, S.: Neural network prediction of slurry erosion of heavy-duty pump impeller/casing materials 18Cr-8Ni, 16Cr-10Ni-2Mo, super duplex 24Cr-6Ni-3Mo-N, and grey cast iron. Wear. 476, 203741 (2021). https://doi.org/10.1016/j.wear.2021.203741

    Article  Google Scholar 

  48. Shuvho, B.A., Chowdhury, M.A., Debnath, U.K.: Analysis of artificial neural network for predicting erosive wear of nylon-12 polymer. Mater. Perform. Charact. 8 (2019). https://doi.org/10.1520/MPC20180164

  49. Zhu, S., Li, J., Ma, L., He, C., Liu, E., He, F., Shi, C., Zhao, N.: Artificial neural network enabled capacitance prediction for carbon-based supercapacitors. Mater. Lett. 233, 294–297 (2018). https://doi.org/10.1016/j.matlet.2018.09.028

    Article  Google Scholar 

  50. Kumar, P., Singh, J., Singh, S.: Neural network supported flow characteristics analysis of heavy sour crude oil emulsified by ecofriendly bio-surfactant utilized as a replacement of sweet crude oil. Chem. Eng. J. Adv. 11, 100342 (2022). https://doi.org/10.1016/j.ceja.2022.100342

    Article  Google Scholar 

  51. Singh, J., Singh, S.: A review on machine learning aspect in physics and mechanics of glasses. Mater. Sci. Eng. B. 284, 115858 (2022). https://doi.org/10.1016/j.mseb.2022.115858

    Article  Google Scholar 

  52. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Netw. 12, 145–151 (1999)

    Article  Google Scholar 

  53. Kenneth Levenberg: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944). https://doi.org/10.1177/002205741408001401

    Article  MathSciNet  Google Scholar 

  54. Singh, J., Singh, J.P.: Numerical Analysis on Solid particle Erosion in elbow of a Slurry Conveying Circuit. J. Pipeline Syst. Eng. Pract. 12, 04020070 (2021). https://doi.org/10.1061/(asce)ps.1949-1204.0000518

    Article  Google Scholar 

  55. Singh, J.: Slurry erosion performance analysis and characterization of high-velocity oxy-fuel sprayed Ni and Co hardsurfacing alloy coatings. J. King Saud Univ. - Eng. Sci. (2021). https://doi.org/10.1016/j.jksues.2021.06.009

    Article  Google Scholar 

  56. Singh, J., Kumar, S., Mohapatra, S.: Study on role of particle shape in erosion wear of austenitic steel using image processing analysis technique. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 233, 712–725 (2019). https://doi.org/10.1177/1350650118794698

  57. Gandhi, B.K., Singh, S.N., Seshadri, V.: A study on the effect of surface orientation on erosion wear of flat specimens moving in a solid-liquid suspension. Wear. 254, 1233–1238 (2003)

    Article  Google Scholar 

  58. Mansouri, A., Arabnejad, H., Karimi, S., Shirazi, S.A., McLaury, B.S.: Improved CFD modeling and validation of erosion damage due to fine sand particles. Wear. 338–339, 339–350 (2015). https://doi.org/10.1016/j.wear.2015.07.011

    Article  Google Scholar 

  59. Oka, Y.I., Okamura, K., Yoshida, T.: Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear. 259, 95–101 (2005). https://doi.org/10.1016/j.wear.2005.01.039

    Article  Google Scholar 

  60. Clark, H.M., Hawthorne, H.M., **e, Y.: Wear rates and specific energies of some ceramic, cermet and metallic coatings determined in the Coriolis erosion tester. Wear. 233–235, 319–327 (1999)

    Article  Google Scholar 

  61. Clark, M.C.I.: Specimen diameter, impact velocity, erosion rate and particle density in a slurry pot erosion tester. Wear. 164–162, 669–678 (1993)

    Article  Google Scholar 

  62. Clark, H.M.: On the impact rate and impact energy of particles in a slurry pot erosion tester. Wear. 147, 165–183 (1991)

    Article  Google Scholar 

  63. Bitter, J.G.A.: A study of erosion phenomena. Part. II Wear. 6, 169–190 (1963). https://doi.org/10.1016/0043-1648(63)90073-5

    Article  Google Scholar 

  64. Bitter, J.G.A.: A study of Erosion Phenomena Part I. Wear. 6, 169–190 (1963)

    Article  Google Scholar 

  65. Manisekaran, T., Kamaraj, M., Sharrif, S.M., Joshi, S.V.: Slurry erosion studies on surface modified 13Cr-4Ni steels: Effect of angle of im**ement and particle size. J. Mater. Eng. Perform. 16, 567–572 (2007). https://doi.org/10.1007/s11665-007-9068-5

    Article  Google Scholar 

  66. Turenne, S., Châtigny, Y., Simard, D., Caron, S., Masounave, J.: The effect of abrasive particle size on the slurry erosion resistance of particulate-reinforced aluminium alloy. Wear. 141, 147–158 (1990). https://doi.org/10.1016/0043-1648(90)90199-K

    Article  Google Scholar 

  67. Tarodiya, R., Gandhi, B.K.: Experimental investigation on Slurry Erosion Behavior of 304L Steel, Grey cast Iron, and high chromium white cast Iron. J. Tribol. 141, 1–11 (2019). https://doi.org/10.1115/1.4043903

    Article  Google Scholar 

  68. Tarodiya, R., Gandhi, B.K.: Hydraulic performance and erosive wear of centrifugal slurry pumps - a review. Powder Technol. 305, 27–38 (2017). https://doi.org/10.1016/j.powtec.2016.09.048

    Article  Google Scholar 

  69. Desale, G.R., Gandhi, B.K., Jain, S.C.: Development of correlations for predicting the slurry erosion of ductile materials. J. Tribol. 133, 1–10 (2011). https://doi.org/10.1115/1.4004342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jashanpreet Singh or Hitesh Vasudev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Vasudev, H., Szala, M. et al. Neural computing for erosion assessment in Al-20TiO2 HVOF thermal spray coating. Int J Interact Des Manuf 18, 2321–2332 (2024). https://doi.org/10.1007/s12008-023-01372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01372-y

Keywords

Navigation