Log in

Optimum design of S-shaped diffuser by studying the effect of inlet velocity, turning angle and area ratio

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The present work aims at the optimum design and the optimum operating condition of a S-shaped diffuser by studying the effect of inlet velocity, turning angle and area ratio using Computational Fluid Dynamics. Fluent 17.1 software has been used for this simulation work. It is found that the static pressure recovery coefficient (Cp) increases and the total pressure loss coefficient (Cl) decreases as the inlet velocity increases. It is also found that cross-flow velocity becomes more prominent as turning angle increases and the magnitude of in-plane velocity increases with the increase in area ratio. It is further found that flow separation at the bottom wall increases with the increment in area ratio and decreases with the increase in turning angle. Finally, it is found that AR 4 is the optimum area ratio and 75°/75° is the optimum turning angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Abbreviations

AR :

\( {\text{area ratio, }}\frac{{\text{Outlet Area}}}{{\text{Inlet Area}}} \)

C l :

\( {\text{Total pressure loss coefficient, }}\frac{{\left( {P_{ti} - P_{t} } \right)}}{{\frac{1}{2}\rho u^{2}_{avi} }} \)

C p :

\( {\text{ Static pressure loss coefficient, }}\frac{{\left( {P_{st} - P_{sti} } \right)}}{{\frac{1}{2}\rho u^{2}_{avi} }} \)

C, C, C :

Model constants

C:

Centerline length of the duct

X:

Longitudinal direction

k:

Turbulent kinetic energy

P:

Pressure

σk, σε :

Prandtl number for k and ε

\(\overline{u}\) :

Time averaged velocity

G:

Production term

V32:

Normalized average velocity, \( \frac{{u_{av} }}{{u_{avi} }} \)

u:

Velocity

x:

Distance along centerline

X-Cf:

Skin friction coefficient along X direction

ε:

Turbulent kinetic energy dissipation rate (m2/s3)

η:

Nondimensional parameter

μ:

Molecular absolute viscosity

μt :

Turbulent

ρ:

Fluid density

avi:

Mass average property at the inlet

i, j:

Tensorial notations

t:

Stagnation property

avo:

Mass average property at the outlet

sti:

Static property at the inlet

st:

Static property

ti:

Stagnation property at the inlet

to:

Stagnation property at the outlet

References

  1. Taylor, A.M.K.P., Whitelaw, J.H., Yianneskis, M.: Develo** flow in S-shaped ducts. 1: Square cross-section duct (No. NAS 1.26: 3550) (1982)

  2. Taylor, A.M.K.P., Whitelaw, J.H., Yianneskis, M.: Develo** flow in S-shaped ducts. 2: Circular cross-section duct (No. NAS 1.26: 3759). NASA (1984)

  3. Shimizu, Y., Nagafusa, M., Sugino, K., Nakamura, F.: Studies on performance and internal flow of twisted S-shaped bend diffuser—the so-called coiled bend diffuser: 1st report (1986)

  4. Shimizu, Y., Nagafusa, M., Sugino, K. and Kubota, T.: Studies on performance and internal flow of U-shaped and snake-shaped bend diffusers: 2nd report (1986)

  5. Saha, K., Singh, S.N., Seshadri, V., Mukhopadhyay, S.: Computational analysis on flow through transition S-diffusers: effect of inlet shape. J. Aircr. 44(1), 187–193 (2007)

    Article  Google Scholar 

  6. Gupta, V., Devpura, R., Singh, S.N., Seshadri, V.: Effect of aspect ratio and curvature on characteristics of S-shaped diffusers (2001)

  7. Majumdar, B., Singh, S.N., Agrawal, D.P.: Flow characteristics in S-shaped diffusing duct. Int. J. Turbo Jet Engines 14(1), 45–57 (1997)

    Article  Google Scholar 

  8. Sullerey, R.K., Chandra, B., Muralidhar, V.: Performance comparison of straight and curved diffusers. Def. Sci. J. 33(3), 195–203 (1983)

    Article  Google Scholar 

  9. Paul, A.R., Ranjan, P., Patel, V.K., Jain, A.: Comparative studies on flow control in rectangular S-duct diffuser using submerged-vortex generators. Aerosp. Sci. Technol. 28(1), 332–343 (2013)

    Article  Google Scholar 

  10. Nohseth, N.H., Nordin, N., Othman, S., Raghavan, V.R.: Investigation of flow uniformity and pressure recovery in a turning diffuser by averages of baffles. Appl. Mech. Mater. 465, 526–530 (2014)

    Google Scholar 

  11. Nordin, N., Abdul Karim, Z.A., Othman, S., Raghavan, V.R.: Effect of varying inflow reynolds number on pressure recovery and flow uniformity of 3-D turning diffuser. Appl. Mech. Mater. 699, 422–428 (2015)

    Article  Google Scholar 

  12. Nordin, N., Raghavan, V.R., Othman, S., Abdul Karim, Z.A.: Numerical investigation of turning diffuser performance by varying geometric and operating parameters. Appl. Mech. Mater. 229, 2086–2093 (2012)

    Article  Google Scholar 

  13. El-Askary, W.A., Nasr, M.: Performance of a bend–diffuser system: experimental and numerical studies. Comput. Fluids 38(1), 160–170 (2009)

    Article  MATH  Google Scholar 

  14. Thenambika, V., Ponsankar, S., Prabhu, M.K.: Design and flow analysis of S duct diffuser with submerged vortex Generators. Int. J. Eng. Res. Appl. 6(2), 79–84 (2016)

    Google Scholar 

  15. Gan, W., Zhang, X.: Design optimization of a three-dimensional diffusing S-duct using a modified SST turbulent model. Aerosp. Sci. Technol. 63, 63–72 (2017)

    Article  Google Scholar 

  16. Abd Halim, M.A., Mohd, N.N., Nasir, M.M., Dahalan, M.N.: The evaluation of k–ε and k–ω turbulence models in modelling flows and performance of s-shaped diffuser. Int. J. Automot. Mech. Eng. 15(2), 5161–5177 (2018)

    Article  Google Scholar 

  17. Liu, Z., Li, Q., Ishihara, T.: Numerical investigation of a swirl diffuser with a novel design using large eddy simulations. Build. Environ. 135, 124–141 (2018)

    Article  Google Scholar 

  18. Lee, J., Lee, S., Cho, J.: Effect of inlet boundary layer suction on flow distortion in subsonic diffusing S-duct. Int. J. Aeronaut. Space Sci. 20(4), 850–857 (2019)

    Article  Google Scholar 

  19. Belhocine, A., Abdullah, O.I.: Numerical simulation of thermally develo** turbulent flow through a cylindrical tube. Int. J. Adv. Manuf. Technol. 102(5), 2001–2012 (2019)

    Article  Google Scholar 

  20. Taheri, A., Khoshnevis, A.B., Lakzian, E.: The effects of wall curvature and adverse pressure gradient on air ducts in HVAC systems using turbulent entropy generation analysis. Int. J. Refrig 113, 21–30 (2020)

    Article  Google Scholar 

  21. Yang, J., Zhang, Y., Chen, H., Fu, S.: Flow separation control in a conical diffuser with a Karman-vortex generator. Aerosp. Sci. Technol. 106, 106076 (2020)

    Article  Google Scholar 

  22. Madadi, A., Nili-Ahmadabadi, M., Kermani, M.J.: Quasi-3D inverse design of S-shaped diffuser with specified cross-section distribution; super-ellipse, egg-shaped, and ellipse. Inverse Probl. Sci. Eng. 29(13), 2611–2628 (2021)

    Article  MATH  Google Scholar 

  23. Singh, R.K., Pramanick, A.K., Rana, S.C.: Computational study of temperature separation for a three-dimensional vortex tube with cold exit diameter and nozzle number variation. Int. J. Ambient Energy 43, 7046–7060 (2022)

    Article  Google Scholar 

  24. Alam, M., Kumar, R., Banoriya, D., Yadav, A.S., Goga, G., Saxena, K.K., Buddhi, D., Mohan, R.: Design and development of thermal comfort analysis for air-conditioned compartment. Int. J. Interact. Des. Manuf. (IJIDeM) (2022). https://doi.org/10.1007/s12008-022-01015-8

    Article  Google Scholar 

  25. Rahmatian, M.A., Tari, P.H., Mojaddam, M., Majidi, S.: Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine. Energy 245, 123267 (2022)

    Article  Google Scholar 

  26. Duttaluru, G., Singh, P., Ansu, A.K., Kumar, A., Sharma, R., Mishra, S.: Methods to enhance the thermal properties of organic phase change materials: a review. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.04.911

    Article  Google Scholar 

  27. Kumar, A., Layek, A.: Effect of heat transfer and pressure drop characteristics on the performance analysis of an artificially roughened solar air heater. Heat Mass Transf. (2022). https://doi.org/10.1007/s00231-022-03296-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok kumar Ansu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.K., Singh, R.K., Roy, M. et al. Optimum design of S-shaped diffuser by studying the effect of inlet velocity, turning angle and area ratio. Int J Interact Des Manuf 17, 2673–2685 (2023). https://doi.org/10.1007/s12008-022-01132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01132-4

Keywords

Navigation