Log in

A comparative study on multi-objective pareto optimization of WEDM process using nature-inspired metaheuristic algorithms

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Due to its ability to generate complex and intricate shape features on different hard-to-cut materials with minimum dimensional deviation and higher surface finish, wire electrical discharge machining (WEDM) process has already become well-acknowledged in various modern-day manufacturing industries. For optimizing the machining performance of this process, applications of numerous metaheuristic algorithms and multi-criteria decision making (MCDM) techniques are already available in the existent literature. In this paper, six recently developed but yet to be popular nature-inspired metaheuristic algorithms, i.e. multi-objective ant lion optimization (MOALO) algorithm, multi-objective dragonfly algorithm (MODA), multi-objective grasshopper optimization algorithm (MOGOA), multi-objective grey wolf optimizer (MOGWO), non-dominated sorting moth flame optimization (NSMFO) algorithm and non-dominated sorting whale optimization algorithm (NSWOA) are employed for Pareto optimization of a WEDM process. From the developed Pareto optimal fronts, the optimal parametric combinations of the said process are extracted with the help of a post priori MCDM tool called combined compromise solution (CoCoSo) method. It is revealed that for all the considered nature-inspired metaheuristics, the optimal parametric intermixes vary with respect to the weights assigned to the responses. However, MOGWO, MOGOA and MODA are able to identify the best solutions 47%, 28% and 20% of the cases respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xu, C.S.: Working principle and performance of wire electrical discharge machining. Adv. Mater. Res. 507, 180–183 (2012)

    Article  Google Scholar 

  2. Rao, P.S., Ramji, K., Satyanarayana, B.: Experimental investigation and optimization of wire EDM parameters for surface roughness, MRR and white layer in machining of aluminium alloy. Proc. Mater. Sci. 5, 2197–2206 (2014)

    Article  Google Scholar 

  3. Joshi, A.: Wire cut edm process limitations for tool and die steel. Int. J. Tech. Res. Appl. 2, 65–68 (2014)

    Google Scholar 

  4. Kumar, R., Singh, S.: Current research trends in wire electrical discharge machining: an overview. Int. J. Emerg. Technol. 3, 33–40 (2012)

    Google Scholar 

  5. Sharma, S., Vates, U.K., Bansal, A.: Parametric optimization in wire EDM of D2 tool steel using Taguchi method. Mater. Today Proc. 45, 757–763 (2021)

    Article  Google Scholar 

  6. Shivade, A.S., Shinde, V.D.: Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & grey relational analysis. J. Ind. Eng. Int. 10, 149–162 (2014)

    Article  Google Scholar 

  7. Ay, M., Etyemez, A.: Optimization of the effects of wire EDM parameters on tolerances. Emerg. Mater. Res. 9, 527–531 (2020)

    Google Scholar 

  8. Kavimani, V., Prakash, K.S., Thankachan, T.: Multi-objective optimization in WEDM process of graphene-SiC-magnesium composite through hybrid techniques. Measurement 145, 335–349 (2019)

    Article  Google Scholar 

  9. Das, P.P., Diyaley, S., Chakraborty, S., Ghadai, R.K.: Multi-objective optimization of wire electro discharge machining (WEDM) process parameters using grey-fuzzy approach. Period. Polytech. Mech. Eng. 63(1), 16–25 (2019)

    Article  Google Scholar 

  10. Das, P.P., Tiwary, A.P., Chakraborty, S.: A hybrid MCDM approach for parametric optimization of a micro-EDM process. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00869-2

    Article  Google Scholar 

  11. Kalita, K., Pal, S., Haldar, S., Chakraborty, S.: A hybrid TOPSIS-PR-GWO approach for multi-objective process parameter optimization. Process Integr. Optim. Sustain. (2022). https://doi.org/10.1007/s41660-022-00256-0

    Article  Google Scholar 

  12. Zhang, G., Zhang, Z., Ming, W., Guo, J., Huang, Y., Shao, X.: The multi-objective optimization of medium-speed WEDM process parameters for machining SKD11 steel by the hybrid method of RSM and NSGA-II. Int. J. Adv. Manuf. Technol. 70(9), 2097–2109 (2014)

    Article  Google Scholar 

  13. Alduroobi, A.A.A., Ubaid, A.M., Tawfiq, M.A., Elias, R.R.: Wire EDM process optimization for machining AISI 1045 steel by use of Taguchi method, artificial neural network and analysis of variances. Int. J. Syst. Assur. Eng. Manag. 11, 1314–1338 (2020)

    Article  Google Scholar 

  14. Kesarwani, S., Verma, R.K.: A novel hybridization of seagull algorithm and combined compromise solution (SOA-oCoSo) in drilling investigation of carbon nano-onion-modified polymer composites for structural application. Surf. Rev. Lett. (2022). https://doi.org/10.1142/S0218625X22500548

    Article  Google Scholar 

  15. Sharma, N., Gupta, R.D., Khanna, R., Sharma, R.C., Sharma, Y.K.: Machining of Ti-6Al-4V biomedical alloy by WEDM: investigation and optimization of MRR and Rz using grey-harmony search. World J. Eng. (2021). https://doi.org/10.1108/WJE-05-2021-0278

    Article  Google Scholar 

  16. Kalita, K., Ghadai, R.K., Chakraborty, S.: Parametric optimization of CVD process for DLC Thin film coatings: a comparative analysis. Sadhana (2022). https://doi.org/10.1007/s12046-022-01842-1

    Article  Google Scholar 

  17. Kalita, K., Mukhopadhyay, T., Dey, P., Haldar, S.: Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses. Neural Comput. Appl. 32(12), 7969–7993 (2020)

    Article  Google Scholar 

  18. Joshi, M., Ghadai, R.K., Madhu, S., Kalita, K., Gao, X.Z.: Comparison of NSGA-II, MOALO and MODA for multi-objective optimization of micro-machining processes. Materials 14(17), 5109 (2021)

    Article  Google Scholar 

  19. Mirjalili, S., Jangir, P., Saremi, S.: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46, 79–95 (2017)

    Article  Google Scholar 

  20. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–1073 (2016)

    Article  Google Scholar 

  21. Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48(4), 805–820 (2018)

    Article  Google Scholar 

  22. Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho, L.D.S.: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016)

    Article  Google Scholar 

  23. Jangir, P., Trivedi, I.N.: Non-dominated sorting moth flame optimizer: a novel multi-objective optimization algorithm for solving engineering design problems. Eng. Technol. Open Access J. 2(1), 17–31 (2018)

    Article  Google Scholar 

  24. Jangir, P., Jangir, N.: Non-dominated sorting whale optimization algorithm (NSWOA): a multi-objective optimization algorithm for solving engineering design problems. Global J. Res. Eng. 17(4), 1–29 (2017)

    Google Scholar 

  25. Yazdani, M., Zarate, P., Zavadskas, E.K., Turskis, Z.: A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 57, 2501–2519 (2019)

    Article  Google Scholar 

  26. Das, P.P., Chakraborty, S.: SWARA-CoCoSo method-based parametric optimization of green dry milling processes. J. Eng. Appl. Sci. 69(1), 1–21 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Chakraborty.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig. 

Fig. 12
figure 12

Pareto fronts developed by the six metaheuristics

12.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, K., Ghadai, R.K. & Chakraborty, S. A comparative study on multi-objective pareto optimization of WEDM process using nature-inspired metaheuristic algorithms. Int J Interact Des Manuf 17, 499–516 (2023). https://doi.org/10.1007/s12008-022-01007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01007-8

Keywords

Navigation