Log in

Lifetime prediction for polymer coatings via thermogravimetric analysis

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Polymer coatings, when brought to elevated temperatures may experience thermal decomposition, leading to failure of their protective properties. The process of thermal decomposition can be followed by thermogravimetry (TG), which allows quantitative analysis. Applying the right theoretical model, the TG data can be extrapolated to a broader temperature range for evaluating the coating’s lifetime. The paper provides a thorough analysis of the current-state experimental and theoretical approaches in this area. As an example, thermal decomposition in nitrogen, air, and oxygen of dual polymer coatings on two different optical fibers is studied via isothermal and non-isothermal TG. For one of the coatings, the isothermal mass loss behavior resembles an n-th order kinetics function. For the other coating, the TG curves exhibit a more complex behavior, suggesting presence of an antioxidant in the chemical composition. From the non-isothermal TG data, using isoconversional Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and advanced Vyazovkin, Farjas–Roura and Budrugeac approaches, the activation energies are determined, and the isothermal mass loss functions are simulated. For several fiber/gas combinations, a significant discrepancy is observed between the experimentally obtained isothermal TG curves and those simulated from the non-isothermal data. The noted disagreement is analyzed in a view of miscellaneous assumptions of the advanced simulation methods, including the basic isoconversion principle. It is concluded that the isoconversional approaches are not applicable to the studied complex systems, and that the isothermal TG method should be used for determining the coating lifetime at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tur, M, “Optical Fibers—Basics.” In: Thevenaz, L (ed.) Advanced Fiber Optics: Concepts and Technology. EPFL Press, Lausanne (2011)

    Google Scholar 

  2. Janani, R, Majumder, D, Scrimshire, A, Stone, A, Wakelin, E, Jones, AH, Wheeler, NV, Brooks, W, Bingham, PA, “From Acrylates to Silicones: A Review of Common Optical Fibre Coatings Used for Normal to Harsh Environments.” Prog. Org. Coat., 180 107557 (2023)

    Article  CAS  Google Scholar 

  3. Zabegaeva, ON, Kosolapov, AF, Semjonov, SL, Ezernitskaya, MG, Afanasyev, ES, Godovikov, IA, Chuchalov, AV, Sapozhnikov, DA, “Polyamide-Imides as Novel High Performance Primary Protective Coatings of Silica Optical Fibers: Influence of the Structure and Molecular Weight.” React. Funct. Polym., 194 105775 (2024)

    Article  CAS  Google Scholar 

  4. Schmid, S, Toussaint, AF, “Optical Fiber Coatings.” In: Mendez, A, Morse, TF (eds.) Specialty Optical Fibers Handbook, pp. 95–122. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  5. Stolov, AA, Wrubel, JA, Simoff, DA, Lago, RJ, “Acrylate-Based Specialty Optical Fiber Coatings for Harsh Environments.” Proc. Int. Wire & Cable Symp., Providence, RI (2016)

  6. Jacobs, T, “Downhole Fiber-Optic Monitoring: an Evolving Technology.” J. Petrol. Technol., 66 (8) 44–53 (2014)

    Article  Google Scholar 

  7. Lu, Z, Han, L, Hu, C, Pan, Y, Duan, S, Wang, N, Li, S, Nuer, M, “Research on Calibration Method of Downhole Optical Fiber Temperature Measurement and Its Application in SAGD Well.” Proc. SPIE, 10464 104642I (2017)

    Google Scholar 

  8. Severin, I, Abdi, RE, Poulain, M, “Strength Measurements of Silica Optical Fibers Under Severe Environments.” Opt. Laser Tech., 39 (2) 435 (2007)

    Article  CAS  Google Scholar 

  9. Stolov, AA, Li, J, Hokansson, AS, Hines, MJ, “Effects of Hydrogen Scavenging Gel on the Strength and Attenuation of Optical Fibers.” J. Lightwave Technol., 40 (18) 6264 (2022)

    Article  CAS  Google Scholar 

  10. Volotinen, TT, Arvidsson, CB, “Development of Glass Optical Fibers 1970–2020, Providing Us the Digitized Communication World.” J. Mater. Sci. Eng. A, 13 (1–3) 1–12 (2023)

    CAS  Google Scholar 

  11. Simoff, DA, Stolov, AA, Wu, H, Reyngold, NE, Sun, X, “Evolution of Fluoropolymer Clad Fibers” Proc. Int. Wire & Cable Symp., Orlando, FL (2017)

  12. Chan, MG, Simoff, DA, Heyward, IP, “Thermo-Oxidative Degradation and Stabilization of UV-Cured Coatings.” Polym. Mat. Sci. Eng., 58 204 (1988)

    CAS  Google Scholar 

  13. Simoff, DA, Chan, MG, Chapin, JT, Overton, BJ, “Thermo-oxidative Aging of a Primary Lightguide Coating in Films and Dual Coated Fibers.” Polym. Eng. Sci., 29 1177 (1989)

    Article  CAS  Google Scholar 

  14. Wagner, M, Thermal Analysis in Practice. Carl Hanser Verlag, Munich (2018)

    Book  Google Scholar 

  15. Sbirrazzuoli, N, Vincent, L, Mija, A, Guido, N, “Integral, Differential and Advanced Isoconversional Methods. Complex Mechanisms and Isothermal Predicted Conversion-Time Curves.” Chemom. Intel. Lab. Syst., 96 (2) 219–226 (2009)

    Article  CAS  Google Scholar 

  16. Wang, S, Chen, H, Zhang, L, “Thermal Decomposition Kinetics of Rigid Polyurethane Foam and Ignition Risk by a Hot Particle.” Appl. Polym. Sci., 131 (4) 39359 (2013)

    Article  Google Scholar 

  17. Yang, MH, “On the Thermal Degradation of Poly(Styrene Sulfones). VII. Evaluations of Poly(Styrene Sulfone) Thermal Stability using Invariant Kinetic Parameters.” J. Appl. Polym. Sci., 85 (8) 1698–1705 (2002)

    Article  CAS  Google Scholar 

  18. Ramis, X, Salla, JM, Puiggali, J, “Kinetic Studies on the Thermal Polymerization of N-Chloroacetyl-11-Aminoundecanoate Potassium Salt.” J. Polym. Sci. A., 43 (6) 1166–1176 (2005)

    Article  CAS  Google Scholar 

  19. Meng, X, Huang, Y, Yu, H, Lv, Z, “Thermal Degradation Kinetics of Polyimide Containing 2,6-Benzobisoxazole Units.” Polym. Degrad. Stab., 92 (6) 962–967 (2007)

    Article  CAS  Google Scholar 

  20. Chrissafis, K, Paraskevopoulos, KM, Bikiaris, DN, “Effect of Molecular Weight on Thermal Degradation Mechanism of the Biodegradable Polyester Poly(Ethylene Succinate).” Thermochim. Acta., 440 (2) 166–175 (2006)

    Article  CAS  Google Scholar 

  21. Liu, B, Li, Y, Zhang, L, Yan, W, Yao, S, “Thermal Degradation Kinetics of Poly(N-Adamantyl-Exo-Nadimide) Synthesized by Addition Polymerization.” J. Appl. Polym. Sci., 103 (5) 3003–3009 (2003)

    Article  Google Scholar 

  22. Varhegyi, G, “Aims and Methods in Non-Isothermal Reaction Kinetics.” J. Anal. Appl. Pyrolysis, 79 (1–2) 278–288 (2007)

    Article  CAS  Google Scholar 

  23. Vyazovkin, S, “Evaluation of Activation Energy of Thermally Stimulated Solid-State Reactions Under Arbitrary Variation of Temperature.” J. Comput. Chem., 18 (3) 393–402 (1997)

    Article  CAS  Google Scholar 

  24. Vyazovkin, S, Dranca, I, Fan, X, Advincula, R, “Kinetics of the Thermal and Thermo-Oxidative Degradation of a Polystyrene-Clay Nanocomposite.” Macromol. Rapid Commun., 25 (3) 489–503 (2004)

    Article  Google Scholar 

  25. Vyazovkin, S, Burnham, AK, Criado, JM, Perez-Maqueda, LA, Popescu, C, Sbirrazzuoli, N, “ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data.” Thermochim. Acta, 520 (1) 1–19 (2011)

    Article  CAS  Google Scholar 

  26. Farjas, J, Roura, P, “Isoconversional Analysis of Solid State Transformations. A Critical Review. Part I. Single Step Transformations with Constant Activation Energy.” J. Therm. Anal. Calorim., 105 (3) 757–766 (2011)

    Article  CAS  Google Scholar 

  27. Farjas, J, Roura, P, “Isoconversional Analysis of Solid State Transformations. A Critical Review. Part II. Complex Transformations.” J. Therm. Anal. Calorim., 105 (3) 767–773 (2011)

    Article  CAS  Google Scholar 

  28. Farjas, J, Roura, P, “Isoconversional Analysis of Solid State Transformations. A Critical Review. Part III. Isothermal and Non-Isothermal Predictions.” J. Therm. Anal. Calorim., 109 (1) 183–191 (2011)

    Article  Google Scholar 

  29. Budrugeac, P, “An Iterative Model-Free Method to Determine the Activation Energy of Non-Isothermal Heterogeneous Processes.” Thermochim. Acta, 511 (1) 8–16 (2010)

    Article  CAS  Google Scholar 

  30. Budrugeac, P, “Applicability of Non-Isothermal Model-Free Predictions for Assessment of Conversion vs. Time Curves for Complex Processes in Isothermal and Quasi-Isothermal Conditions.” Thermochim. Acta, 558 67–73 (2013)

    Article  CAS  Google Scholar 

  31. Stolov, AA, Simoff, DA, Li, J, “Thermal Stability of Specialty Optical Fibers.” J. Lightwave Technol., 26 (20) 3443–3451 (2008)

    Article  Google Scholar 

  32. Das, P, Tiwari, P, “Thermal Degradation Kinetics of Plastics and Model Selection.” Thermochim. Acta, 654 191–202 (2017)

    Article  CAS  Google Scholar 

  33. Das, P, Tiwari, P, “Thermal Degradation Study of Waste Polyethylene Terephthalate (PET) Under Inert and Oxidative Environments.” Thermochim. Acta, 679 178340 (2019)

    Article  Google Scholar 

  34. Costa, MJF, Araujo, AS, Silva, EFB, Farias, MF, Fernandes, VJ, Santa-Cruz, PdA, Pacheco, JGA, “Model-Free Kinetics Applied for the Removal of CTMA+ and TPA+ of the Nanostructures Hybrid AIMCM-41/ZSM-5 Material.” J. Therm. Anal. Calorim., 106 757–771 (2011)

    Article  Google Scholar 

  35. Poletto, M, Dettenborn, J, Pistor, V, Zeni, M, Zattera, AJ, “Materials Produced from Plant Biomass. Part I: Evaluation of Thermal Stability and Pyrolysis of Wood.” Mater. Res., 13 (3) 375–379 (2010)

    Article  CAS  Google Scholar 

  36. Hua, Z, Wang, Q, Jia, C, Liu, Q, “Pyrolysis Kinetics of a Wangqing Oil Shale Using Thermogravimetric Analysis.” Energy Sci. Eng., 7 912–920 (2019)

    Article  Google Scholar 

  37. Flynn, JH, Wall, LA, “A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data.” J. Polym. Sci. B Polym. Lett., 4 (5) 323–328 (1966)

    Article  CAS  Google Scholar 

  38. Ozawa, T, “A New Method of Analyzing Thermogravimetric Data.” Bull. Chem. Soc. Jpn., 38 (11) 1881–1886 (1965)

    Article  CAS  Google Scholar 

  39. Friedman, HL, “Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic.” J. Polym. Sci. C., 6 (1) 183–195 (1964)

    Article  Google Scholar 

  40. Kissinger, HE, “Reaction Kinetics in Differential Thermal Analysis.” Anal. Chem., 29 (11) 1702–1706 (1957)

    Article  CAS  Google Scholar 

  41. Akahira, T, Sunose, T, “Joint Convention of Four Electrical Institutes.” Sci. Technol., 16 22–31 (1971)

    Google Scholar 

  42. Paek, UC, “Free Drawing and Polymer Coating of Silica Glass Optical Fibers.” Trans. ASME, 121 774–788 (1999)

    Article  CAS  Google Scholar 

  43. Stolov, AA, Simoff, DA, “Thermal Stability of Optical Fiber Coatings: Comparison of Experimental Thermogravimetric Approaches.” J. Therm. Anal. Calorim., 146 1773–1789 (2021)

    Article  CAS  Google Scholar 

  44. Stolov, AA, Westbrook, PS, Li, J, Hokansson, AS, “Non-Additive Effects of Ionizing Radiation and Hydrogen on Optical Fiber Attenuation.” J. Lightwave Tech., 40 (20) 6534–6541 (2022)

    CAS  Google Scholar 

  45. Sbirrazzuoli, N, “Model-Free Isothermal and Nonisothermal Predictions Using Advanced Isoconversional Methods.” Thermochim. Acta, 697 178855 (2021)

    Article  CAS  Google Scholar 

  46. Granado, L, Sbirrazzuoli, N, “Isoconversional Computations for Nonisothermal Kinetic Predictions.” Thermochim. Acta, 697 178859 (2021)

    Article  CAS  Google Scholar 

  47. Draper, NR, Smith, H, Applied Regression Analysis. Wiley, New York (1966)

    Google Scholar 

  48. Jankovic, B, “Thermal Degradation Process of the Cured Phenolic Triazine Thermoset Resin (Primaset® PT-30). Part I. Systematic Non-Isothermal Kinetic Analysis.” Themochim. Acta, 519 (1–2) 114–124 (2011)

    Article  CAS  Google Scholar 

  49. Cai, J, Chen, Y, Liu, R, “Isothermal Kinetic Predictions from Nonisothermal Data by Using the Iterative Linear Integral Isoconversional Method.” J. Energy Inst., 87 (3) 183–187 (2014)

    Article  CAS  Google Scholar 

  50. Li, C, Ma, Z, Zhang, X, Fan, H, Wan, J, “Silicone-Modified Phenolic Resin: Relationships Between Molecular Structure and Curing Behavior.” Thermochim. Acta, 639 53–65 (2016)

    Article  CAS  Google Scholar 

  51. Brachi, P, Miccio, F, Miccio, M, Ruoppolo, G, “Isoconversional Kinetic Analysis of Olive Pomace Decomposition Under Torrefaction Operating Conditions.” Fuel Proc. Tech., 130 147–154 (2015)

    Article  CAS  Google Scholar 

  52. Mishra, G, Kumar, J, Bhaskar, T, “Kinetic Studies on the Pyrolysis of Pinewood.” Bioresource Tech., 182 282–288 (2015)

    Article  CAS  Google Scholar 

  53. Carpier, Y, Alia, A, Vieille, B, Barbe, F, “Experiments Based Analysis of Thermal Decomposition Kinetics Model. Case of Carbon Fibers Polyphenylene Sulfide Composites.” Polym. Degr. Stab., 186 109525 (2021)

    Article  CAS  Google Scholar 

  54. Goodarzi, V, Jafari, SH, Khonakdar, HA, Monemian, SA, Mortazavi, M, “An Assessment of the Role of Morphology in Thermal/Thermo-Oxidative Degradation Mechanism of PP/EVA/Clay Nanocomposites.” Polym. Degr. Stab., 95 859–869 (2010)

    Article  CAS  Google Scholar 

  55. Tan, A, Tang, D, Mu, T, Xu, C, Wang, D, Wang, Q, “The Validity of Nonlinear Isoconversional Method in the Kinetic Analysis of Calcium Carbonate Decomposition Under Isothermal and Non-Isothermal Conditions.” Thermochim. Acta, 584 21–24 (2014)

    Article  Google Scholar 

  56. Rasi, S, Roura-Grabulosa, P, Farjas, J, “Application of Thermal Analysis and Kinetic Predictions to YBCO Films Prepared by Chemical Solution Deposition Methods.” J. Therm. Anal. Calorim., 142 2077–2086 (2020)

    Article  CAS  Google Scholar 

  57. Ruiz, JAG, Farjas, J, Blanco, N, Costa, J, Gascons, M, “Assessment of Unexplored Isoconversional Methods to Predict Epoxy-Based Composite Curing Under Arbitrary Thermal Histories.” J. Reinforced Plast. Compos., https://doi.org/10.1177/07316844221145591 (2022)

    Article  Google Scholar 

  58. Budrugeac, P, “Comparison Between Model-Based and Non-Isothermal Model-Free Computational Procedures for Prediction of Conversion-Time Curves of Calcium Carbonate Decomposition.” Thermochom. Acta., 679 178322 (2019)

    Article  CAS  Google Scholar 

  59. Budrugeac, P, “On the Applicability of Model Free Isothermal Prediction Procedures for Complex Process.” Thermochim. Acta, 717 179340 (2022)

    Article  CAS  Google Scholar 

  60. Cortes, AM, Bridgwater, AV, “Kinetic Study of the Pyrolysis of Miscanthus and Its Acid Hydrolysis Residue by Thermogravimetric Analysis.” Fuel. Proc. Tech., 138 184–193 (2015)

    Article  CAS  Google Scholar 

  61. de Freitas-Marques, MB, Araujo, BCR, da Silva, PHR, Fernandes, C, da Nova Mussel, W, de Oliveira Sebastião, RC, Yoshida, MI, “Multilayer Perceptron Network and Vyazovkin Method Applied to the Non-Isothermal Kinetic Study of the Interaction Between Lumefantrine and Molecularly Imprinted Polymer.” J. Therm. Anal. Calorim., 145 2441–2449 (2021)

    Article  Google Scholar 

  62. Li, B, Liu, G, Sun, W, Ye, L, Bi, M, Gao, W, “Experimental and Theoretical Study on Kinetic Behaviour of Coal Gangue and Raw Coal Using Model Reconstruction.” J. Therm. Anal. Calorim., 144 463–477 (2021)

    Article  CAS  Google Scholar 

  63. Sen, U, Pereira, H, “Pyrolysis Behavior of Alternative Cork Species.” J. Therm. Anal. Calorim., 147 4017–4025 (2022)

    Article  CAS  Google Scholar 

  64. Stolov, AA, Wrubel, JA, Simoff, DA, “Thermal Stability of Specialty Optical Fiber Coatings. Observation of Kinetic Compensation Effect.” J. Therm. Anal. Calorim., 124 (3) 1411–1423 (2016)

    Article  CAS  Google Scholar 

  65. Vyazovkin, S, Achilias, D, Fernandez-Francos, X, Galukhin, A, Sbirrazzuoli, N, “ICTAC Kinetics Committee Recommendations for Analysis of Thermal Polymerization Kinetics.” Thermochim. Acta, 714 179243 (2022)

    Article  CAS  Google Scholar 

  66. Vyazovkin, S, Burnham, AK, Favergeon, L, Koga, N, Moukhina, E, Perez-Maqueda, LA, Sbirrazzuoli, N, “ICTAC Kinetics Committee Recommendations for Analysis of Multi-Step Kinetics.” Thermochim. Acta, 689 178597 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank our summer intern Rahul Raman for his help in collecting some of the data. We also wish to thank professors J. Farjas, N. Sbirrazzuoli, and K. Chrissafis and Dr. E. Moukhina for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Stolov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolov, A.A., Popelka, M. & Caviasca, J.A. Lifetime prediction for polymer coatings via thermogravimetric analysis. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-024-00967-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-024-00967-8

Keywords

Navigation