Log in

Development of Progressive Freeze Concentration and Its Application: a Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Progressive freeze concentration (PFC) forms a single ice crystal in the system; therefore, the system is much simpler as compared with the conventional method of equilibrium suspension crystallization (ESC) for freeze concentration, in which many small ice crystals are formed. The concentrate by PFC, as well as ESC, retains the original profile of components after the concentration, which is much different from other methods of concentration like evaporation and reverse osmosis. PFC was successfully applied to concentrate coffee and tea extract. PFC was also applied to concentrate natural flavors, which was recovered from the condensate in the evaporation process of fruit juices. PFC was applied to concentrate various fruit juices, and the concentrates could be fermented to produce new-type fruit wines without chaptalization. Among fruit juices, melon and watermelon were included. These were known to be difficult in concentration for their high thermal sensitivity and viscosity. PFC was also applied to concentrate fermented alcoholic drinks like Japanese sake. In this case, the concentrate retains the similar flavor profile with the original fermented product. This provides an entirely new method for the concentration of alcoholic drink as compared with the conventional distillation, in which flavor profile completely changes from the original fermentate. Some of the applications described above are presently not available in the market and became possible only by PFC, due to its high flexibility in the operation mode and the production scale as compared with ESC, which is applicable only to large-scale continuous operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aider, M., & de Halleux, D. (2008a). Passive and microwave-assisted thawing in maple sap cryoconcentration technology. Journal of Food Engineering, 85(1), 65–72.

    Google Scholar 

  • Aider, M., & de Halleux, D. (2008b). Production of concentrated cherry and apricot juices by cryoconcentration technology. LWT-Food Science and Technology, 41(10), 1768–1775.

    CAS  Google Scholar 

  • Aider, M., & Ounis, W. B. (2012). Skim milk cryoconcentration as affected by the thawing mode: gravitational vs. microwave-assisted. International Journal of Food Science and Technology, 47(1), 195–202.

    CAS  Google Scholar 

  • Aider, M., de Halleux, D., & Melnikova, I. (2008). Gravitational and microwave-assisted thawing during milk whey cryoconcentration. Journal of Food Engineering, 88, 373–380.

    CAS  Google Scholar 

  • Bae, S. K., Miyawaki, O., & Arai, S. (1994). Control of freezing front structure and its effect on the concentration efficiency in progressive freeze concentration. Cryobiology and Cryotechnology, 40, 29–32 (in Japanese).

    Google Scholar 

  • Baker, R. W. (2004). Membrane technology and applications (2nd ed.). West Sussex: Wiley.

    Google Scholar 

  • Brimblecombe, P., Clegg, S. L., Davies, T. D., Shooter, M., & Tranter, M. (1987). Observations of the preferential loss of major ions from melting snow and laboratory ice. Water Research, 21(10), 1279–1286.

    CAS  Google Scholar 

  • Brimblecombe, P., Clegg, S. L., Davies, T. D., Shooter, M., & Tranter, M. (1988). The loss of halide and sulphate ions from melting ice. Water Research, 22(6), 693–700.

    CAS  Google Scholar 

  • Burton, J. A., Prim, R. C., & Slichter, W. P. (1953). The distribution of solute in crystals grown from the melt. Part 1. Theoretical. The Journal of Chemical Physics, 21(11), 1987–1991.

    CAS  Google Scholar 

  • Chen, P. C., Chen, X. D., & Free, K. W. (1999). An experimental study on the special uniformity of solute inclusion in ice formed from falling film flows on a sub-cooled surface. Journal of Food Engineering, 39(1), 101–105.

    CAS  Google Scholar 

  • Davies, T. D., Vincent, C. E., & Brimblecombe, P. (1982). Preferential elution of strong acids from a Norwegian ice cap. Nature, 300(5888), 161–163.

    CAS  Google Scholar 

  • Deshpande, S. S., Bolin, H. R., & Salunkhe, D. K. (1982). Freeze concentration of fruit juices. Food Technology, 36, 68–82.

    CAS  Google Scholar 

  • Ding, Z., Qin, F. G. F., Yuan, J., Huang, S., Jiang, R., & Shao, Y. (2019). Concentration of apple juice with an intelligent freeze concentrator. Journal of Food Engineering, 256, 61–72.

    CAS  Google Scholar 

  • Flesland, O. (1995). Freeze concentration by layer crystallization. Drying Technology, 13(8-9), 1713–1739.

    CAS  Google Scholar 

  • Fujioka, R., Wang, L. P., Dodbiba, G., & Fujita, T. (2013). Application of progressive freeze-concentration for desalination. Desalination, 319, 33–37.

    CAS  Google Scholar 

  • GEA Process Engineering. https://www.gea.com/ja/products/evaporators-crystallizers/icecon.jsp. Accessed 31 March 2020.

  • Gouw, T. H. (1968). Normal freezing. In E. S. Perry (Ed.), Progress in Separation and Purification (pp. 57–82). New York: Wiley.

    Google Scholar 

  • Gu, X., Suzuki, T., & Miyawaki, O. (2005). Limiting partition coefficient in progressive freeze concentration. Journal of Food Science, 70, E546–E551.

    CAS  Google Scholar 

  • Gu, X., Watanabe, M., Suzuki, T., & Miyawaki, O. (2008). Limiting partition coefficient in tubular ice system for progressive freeze concentration. Food Science and Technology Research, 14(3), 249–252.

    CAS  Google Scholar 

  • Gunathilake, M., Shimmura, K., Dozen, M., & Miyawaki, O. (2014a). Flavor retention in progressive freeze concentration for concentration of coffee extract and pear (La France) juice flavor concentrate. Food Science and Technology Research, 20(3), 547–554.

    CAS  Google Scholar 

  • Gunathilake, M., Dozen, M., Shimmura, K., & Miyawaki, O. (2014b). An apparatus for partial ice-melting to improve yield in progressive freeze concentration. Journal of Food Engineering, 142, 64–69.

    Google Scholar 

  • Hernandez, E., Raventos, M., Auleda, J. M., & Ibarz, A. (2009). Concentration of apple and pear juices in a multi-plate freeze concentrator. Innovative Food Science and Emerging Technology, 10(3), 348–355.

    CAS  Google Scholar 

  • Hernandez, E., Raventos, M., Auleda, J. M., & Ibarz, A. (2010). Freeze concentration of must in a pilot plant falling film cryoconcentrator. Innovative Food Science and Emerging Technology, 11(1), 130–136.

    Google Scholar 

  • Huige, N. J. J., & Thijssen, H. A. C. (1972). Production of large crystals by continuous ripening in a stirrer tank. Journal of Crystal Growth, 13(14), 483–487.

    Google Scholar 

  • Ito, Y. (2017). Application of progressive freeze concentration to aromatic industry. Koryo, 273, 87–92 (in Japanese).

    CAS  Google Scholar 

  • Johannsen, M., & Henriksen, A. (1978). Chemistry of snow meltwater: change in concentration during melting. Water Resources Research, 14(4), 615–619.

    Google Scholar 

  • Johnson, W. E. (1993). The story of freeze desalting. Desalination and Water Reuse, 3, 20–27.

    CAS  Google Scholar 

  • Khawaji, A. D., Kutubkhanah, I. K., & Wie, J. M. (2008). Advances in seawater desalination technologies. Desalination, 221(1-3), 47–69.

    CAS  Google Scholar 

  • Kuroda, N., Iguchi, Y., & Suzuki, N. (2003). Application of ice thermal storage: falling film type of freeze concentration equipment. The Society of Heating, Air-Conditioning Sanitary Engineers of Japan, 1881 (in Japanese).

  • Liu, L., Miyawaki, O., & Nakamura, K. (1997). Progressive freeze concentration of model liquid food. Food Science and Technology International Tokyo, 3(4), 348–352.

    Google Scholar 

  • Liu, L., Fujii, T., Hayakawa, K., & Miyawaki, O. (1998). Prevention of initial supercooling in progressive freeze concentration. Bioscience Biotechnology and Biochemistry, 62(12), 2467–2469.

    CAS  Google Scholar 

  • Liu, L., Miyawaki, O., & Hayakawa, K. (1999). Progressive freeze concentration of tomato juice. Food Science and Technology International Tokyo, 5, 108–112.

    Google Scholar 

  • Lu, H., Wang, J., Wang, T., Wang, N., Bao, Y., & Hao, H. (2017). Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere, 173, 474–484.

    CAS  PubMed  Google Scholar 

  • Mandri, Y., Rich, A., Mangin, D., Abderafi, S., Bebon, C., Semlali, N., Klein, J. P., Bounahmidi, T., & Bouhaouss, A. (2011). Parametric study of the sweating step in the seawater desalination process by indirect freezing. Desalination, 269(1-3), 142–147.

    CAS  Google Scholar 

  • Matthews, J. S., & Coggeshall, N. D. (1959). Concentration of impurities from organic compounds by progressive freezing. Analytical Chemistry, 31(6), 1124–1125.

    CAS  Google Scholar 

  • Miyawaki, O. (2018a). Water and freezing in food. Food Science and Technology Research, 24(1), 1–21.

    CAS  Google Scholar 

  • Miyawaki, O. (2018b). Development of progressive freeze concentration as a new method for high-quality concentration and its application to new local food materials. Bulletin of Ishikawa Prefectural University, 1, 1–9 (in Japanese).

    Google Scholar 

  • Miyawaki, O. (2019). On the concentration of watermelon and melon juices. Journal of the Japanese Society for Food Science and Technology, 66(8), 309–313 (in Japanese).

    CAS  Google Scholar 

  • Miyawaki, O., Liu, L., & Nakamura, K. (1998). Effective partition constant of solute between solid and liquid phases in progressive freeze concentration. Journal of Food Science, 63(5), 756–758.

    CAS  Google Scholar 

  • Miyawaki, O., Liu, L., Shirai, Y., Sakashita, S., & Kagitani, K. (2005). Tubular ice system for scale-up of progressive freeze concentration. Journal of Food Engineering, 69, 107–113.

    Google Scholar 

  • Miyawaki, O., Kato, S., & Watabe, K. (2012). Yield improvement in progressive freeze concentration by partial melting of ice. Journal of Food Engineering, 108, 377–382.

    CAS  Google Scholar 

  • Miyawaki, O., Gunathilake, M., Omote, C., Koyanagi, T., Sasaki, T., Take, H., Matsuda, A., Ishisaki, K., Miwa, S., & Kitano, S. (2016a). Progressive freeze concentration of apple juice and its application to produce a new type apple wine. Journal of Food Engineering, 171, 153–158.

    CAS  Google Scholar 

  • Miyawaki, O., Omote, C., Gunathilake, M., Ishisaki, K., Miwa, S., Tagami, A., & Kitano, S. (2016b). Integrated system of progressive freeze concentration combined with partial ice melting for yield improvement. Journal of Food Engineering, 184, 38–43.

    Google Scholar 

  • Miyawaki, O., Omote, C., Koyanagi, T., Sasaki, T., Take, H., Matsuda, A., & Kitano, S. (2017a). Progressive freeze concentration of Japanese sake. Journal of the Japanese Society for Food Science and Technology, 64(2), 98–101 (in Japanese).

    CAS  Google Scholar 

  • Miyawaki, O., Omote, C., Koyanagi, T., Sasaki, T., Take, H., Matsuda, A., Tadokoro, K., Miwa, S., & Kitano, S. (2017b). Progressive freeze concentration of pineapple juice and its application to wine production. Journal of the Japanese Society for Food Science and Technology, 64(5), 256–262 (in Japanese).

    Google Scholar 

  • Miyawaki, O., Omote, C., Koyanagi, T., Sasaki, T., Take, H., Matsuda, A., Tadokoro, K., Miwa, S., & Kitano, S. (2017c). Progressive freeze concentration of blueberry juice and its application to produce blueberry wine. Japan Journal of Food Engineering, 18(1), 45–51 (in Japanese).

    Google Scholar 

  • Miyawaki, O., Shimmura, K., & Inakuma, T. (2018). Progressive freeze concentration of watermelon and melon. Kaju-Kyokai-Ho, 714, 1–10 (in Japanese).

    Google Scholar 

  • Moreno, F. L., Robles, C. M., Sarmiento, Z., Ruiz, Y., & Pardo, J. M. (2013). Effect of separation and thawing mode on block freeze concentration of coffee brews. Food and Bioproducts Processing, 91(4), 396–402.

    CAS  Google Scholar 

  • Moreno, F. L., Raventos, M., Hernandez, E., & Ruiz, Y. (2014a). Block freeze concentration of coffee extract: effect of freezing and thawing stages on solute recovery and bioactive compounds. Journal of Food Engineering, 120, 158–166.

    CAS  Google Scholar 

  • Moreno, F. L., Hernandez, E., Raventos, M., Robles, C., & Ruiz, Y. (2014b). A process to concentrate coffee extract by the integration of falling film and block ice freeze-concentration. Journal of Food Engineering, 128, 88–95.

    Google Scholar 

  • Moreno, F. L., Quintanilla-Carvajal, M. X., Sotelo, L. I., Osorio, C., Raventos, M., Hernandez, E., & Ruiz, Y. (2015). Volatile compounds, sensory quality and ice morphology in falling-film and block freeze concentration of coffee extract. Journal of Food Engineering, 166, 64–71.

    CAS  Google Scholar 

  • Muller, J. G. (1967). Freeze concentration of food liquids: theory, practice, and economics. Food Technology, 21, 49–61.

    CAS  Google Scholar 

  • Muller, M., & Sekoulov, I. (1992). Waste water reuse by freeze concentration with a falling film reactor. Water Science and Technology, 26(7-8), 1475–1482.

    Google Scholar 

  • Nakagawa, K., Maebashi, S., & Maeda, K. (2009). Concentration of aqueous dye solution by freezing and thawing. The Canadian Journal of Chemical Engineering, 87(5), 779–787.

    CAS  Google Scholar 

  • Nakagawa, K., Maebashi, S., & Maeda, K. (2010a). Freeze-thawing as a path to concentrate aqueous solution. Separation and Purification Technology, 73(3), 403–408.

    CAS  Google Scholar 

  • Nakagawa, K., Nagahama, H., Maebashi, S., & Maeda, K. (2010b). Usefulness of solute elution from frozen matrix for freeze concentration technique. Chemical Engineering Research and Design, 88(5-6), 718–724.

    CAS  Google Scholar 

  • Petzold, G., Moreno, J., Lastra, P., Rojas, K., & Orellana, P. (2015). Block freeze concentration assisted by centrifugation applied to blueberry and pineapple juices. Innovative Food Science and Emerging Technology, 30, 192–197.

    CAS  Google Scholar 

  • Pineau, B., Trought, M. C. T., Stronge, K., Beresford, M. K., Wohlers, M. W., & Jaeger, S. R. (2011). Influence of fruit ripeness and juice chaptalization on the sensory properties and degree of typically expressed by Sauvignon blanc wines from Marlborough, New Zealand. Australian Journal of Grape and Wine Research, 17(3), 358–367.

    CAS  Google Scholar 

  • Pradistsuwana, C., Theprugsa, P., & Miyawaki, O. (2003). Measurement of limiting partition coefficient in progressive freeze concentration. Food Science and Technology Research, 9(2), 190–192.

    Google Scholar 

  • Ramteke, R. S., Singh, N. I., Rekha, M. N., & Eipeson, W. E. (1993). Methods for concentration of fruits juices: a critical evaluation. Journal of Food Science Technol, 30, 391–402.

    Google Scholar 

  • Rich, A., Mandri, Y., Mangin, D., Rivoire, A., Abderafi, S., Bebon, C., Semlali, N., Klein, J. P., Bounahmidi, T., Bouhaouss, A., & Veesler, S. (2012). Sea water desalination by dynamic layer melt crystallization: parametric study of the freezing and sweating steps. Journal of Crystal Growth, 342(1), 110–116.

    CAS  Google Scholar 

  • Samsuri, S. S., Amran, N. A., & Jusoh, M. (2015). Spiral finned crystallizer for progressive freeze concentration process. Chemical Engineering Research and Design, 104, 280–286.

    CAS  Google Scholar 

  • Sanchez, J., Ruiz, Y., Raventos, M., Auleda, J. M., & Hernandez, E. (2010). Progressive freeze concentration of orange juice in a pilot plant falling film. Innovative Food Science and Emerging Technology, 11(4), 644–651.

    Google Scholar 

  • Sanchez, J., Hernandez, E., Auleda, J. M., & Raventos, M. (2011). Freeze concentration of whey in a falling-film based pilot plant: process and characterization. Journal of Food Engineering, 103, 147–155.

    CAS  Google Scholar 

  • Shapiro, J. (1961). Freezing-out, a safe technique for concentration of dilute solutions. Science, 133(3470), 2063–2064.

    CAS  PubMed  Google Scholar 

  • Shirai, Y., Wakisaka, M., Miyawaki, O., & Sakashita, S. (1998). Conditions of producing an ice layer with high purity for freeze wastewater treatment. Journal of Food Engineering, 38, 297–308.

    Google Scholar 

  • Shirai, Y., Wakisaka, M., Miyawaki, O., & Sakashita, S. (1999). Effect of seed ice on formation of tube ice with high purity for a freeze wastewater treatment system with a bubble-flow circulator. Water Research, 33(5), 1325–1329.

    CAS  Google Scholar 

  • Tobitsuka, K., Ajiki, Y., Nouchi, Y., & Miyawaki, O. (2010a). Progressive freeze concentration of aroma components of La France pear. Japan Journal of Food Engineering, 11(1), 31–36 (in Japanese).

    Google Scholar 

  • Tobitsuka, K., Ajiki, Y., Nouchi, Y., & Miyawaki, O. (2010b). Progressive freeze concentration of aroma components of peach fruit. Japan Journal of Food Engineering, 11(3), 141–145 (in Japanese).

    Google Scholar 

  • Wakisaka, M., Shirai, Y., & Sakashita, S. (2001). Ice crystallization in a pilot-scale freeze wastewater treatment system. Chemical Engineering and Processing, 40(3), 201–208.

    CAS  Google Scholar 

  • Watanabe, A., Miyawaki, O., Watanabe, M., & Suzuki, T. (2013). Mechanism of solute incorporation into ice phase in progressive freeze concentration. Japan Journal of Food Engineering, 14(4), 163–168 (in Japanese).

    Google Scholar 

  • Williams, P. M., Ahmad, M., Connolly, B., & Oatley-Radcliffe, D. L. (2015). Technology for freeze concentration in the desalination industry. Desalination, 356, 314–327.

    CAS  Google Scholar 

  • Yamazaki, Y., Yazawa, H., & Hirata, Y. (1998). Experimental study on freeze concentration with ice lining. Kagaku-Kogaku-Ronbun-Shu, 24(1), 30–36 (in Japanese).

    CAS  Google Scholar 

  • Yang, H., Zhan, Z., Yao, Y., & Sun, Z. (2017). Influence of gravity-induced brine drainage on seawater ice desalination. Desalination, 407, 33–40.

    CAS  Google Scholar 

  • Yee, P. L., Wakisaka, M., Shirai, Y., & Hassan, M. A. (2003). Effects of single food components on freeze concentration by freezing and thawing technique. Japan Journal of Food Engineering, 4(3), 77–82.

    Google Scholar 

  • Yee, P. L., Wakisaka, M., Shirai, Y., & Hassan, M. A. (2004). Effect of sodium chloride on freeze concentration of food components by freezing and thawing technique. Japan Journal of Food Engineering, 5(2), 97–102.

    Google Scholar 

  • Zhang, Q., Sun, X., Sheng, Q., Chen, J., Huang, W., & Zhan, J. (2016). Effect of suspension freeze-concentration technology on the quality of wine. South African Journal of Enology and Viticulture, 37, 39–46.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osato Miyawaki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyawaki, O., Inakuma, T. Development of Progressive Freeze Concentration and Its Application: a Review. Food Bioprocess Technol 14, 39–51 (2021). https://doi.org/10.1007/s11947-020-02517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02517-7

Keywords

Navigation