Log in

New Insights on Biomarkers in Systemic Vasculitis

  • Vasculitis (L Espinoza, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The systemic vasculitis is a heterogeneous group of diseases characterized by the inflammation of blood vessels. The development of advanced diagnostic tests and genetic studies have resulted in greater improvement in our understanding of vasculitis pathogenesis and thus in the development of newer therapies. However, there is still an unmet need in the management of systemic vasculitis, focused on develo** of new biomarkers that would enable distinction between active disease from damage or infection and predict treatment response and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jennette JC et al. Revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Arthritis Rheum. 2013;65:1–11. A special consensus article with an up-date in the nomenclature of systemic vasculitis.

    Article  CAS  PubMed  Google Scholar 

  2. Falk RJ, Hoffman GS. Controversies in small vessel vasculitis—comparing rheumatology and nephrology views. Curr Opin Rheumatol. 2007;19:1–9.

    PubMed  Google Scholar 

  3. Tomasson G, Grayson P, Mahr A, et al. Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis—a meta-analysis. Rheumatology (Oxford). 2012;51:100–9.

    Article  CAS  Google Scholar 

  4. Kahlenberg CGM. Key advances in the clinical approach to ANCA-associated vasculitis. Nat Rev Rheumatol. 2014;10:484–93.

    Article  Google Scholar 

  5. Lally L, Spiera RF. Biomarkers in ANCA-associated vasculitis. Curr Rheumatol. 2013;15:363. Comprehensive report with a complete literature review on potential biomarkers in ANCA-associated vasculitis.

    Article  Google Scholar 

  6. Monach P. Biomarkers in vasculitis. Curr Opin Rheumatol. 2014;26:24–30. A complete review regarding the progress on biomarkers in systemic vasculitis.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Eriksson P, Sandell C, Backteman K, et al. B cell abnormalities in Wegener’s granulomatosis and microscopic polyangiitis: role of CD25+ − expressing B cells. J Rheumatol. 2010;37:2086–95.

    Article  PubMed  Google Scholar 

  8. Unizony S, Lim N, Phippard D, et al. Peripheral CD5+ B-cells in ANCA-associated vasculitis. Arthritis Rheum. 2014. doi:10.1002/art.38916.

    Google Scholar 

  9. Cartin-Ceba R, Golbin J, Keogh KA, et al. Rituximab for remission induction and maintenance in refractory granulomatosis with polyangiitis (Wegener’s): a single-center ten-year experience. Arthritis Rheum. 2012;64:3770–08.

    Article  CAS  PubMed  Google Scholar 

  10. McKinney EF, Lyons PA, Carr EJ. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat Med. 2010;16:586–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Monach PA, Warner RL, Tomasson G, et al. Serum proteins reflecting inflammation, injury, and repair as biomarkers of disease activity in ANCA-associated vasculitis. Ann Rheum Dis. 2013;72:1342–50. In this study, 28 serum proteins representing diverse aspects of the biology of AAV were measured before and 6 months after treatment. CXCL13, MMP-3 and TIMP-1 distinguish active AAV from remission better than the other markers studied, including ESR and CRP.

    Article  CAS  PubMed  Google Scholar 

  12. Leone A, Uzzo ML, Gerbino A, et al. Modulation of MMP-2 and MMP-9 in Churg-Strauss syndrome respiratory mucosa: potential monitoring parameters. Int J Immunopathol Pharmacol. 2014;27(2):299–304.

    CAS  PubMed  Google Scholar 

  13. Manolov V, Petrova I, Vasilev V. VEGF levels in diagnosis of vasculitic neuropathy. Clin Lab. 2014;60(9):1573–7.

    CAS  PubMed  Google Scholar 

  14. Jennette JC, **ao H, Hu P. Complement in ANCA-associated vasculitis. Semin Nephrol. 2013;33(6):557–64.

    Article  PubMed Central  Google Scholar 

  15. Yuan J, Gou SJ, Huang J, et al. C5a and its receptors in human anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Arthritis Res Ther. 2012;14:R140.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gou S, Yuan J, Chen M, et al. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 2013;83:129–37.

    Article  CAS  PubMed  Google Scholar 

  17. de Souza A, Westra J, Bijzet J, et al. Is serum HMGB1 a biomarker in ANCA-associated vasculitis? Arthritis Res Ther. 2013;15:R104.

    Article  PubMed Central  PubMed  Google Scholar 

  18. de Souza A, Abdulahad W, Sosicka P, et al. Are urinary levels of high mobility group box 1 markers of active nephritis in anti-neutrophil cytoplasmic antibody-associated vasculitis? Clin Exp Immunol. 2014;178:270–8.

    Article  PubMed  Google Scholar 

  19. Zhou T, Zhang Y, Wu P, et al. Potential biomarkers and latent pathways for vasculitis based on latent pathway identification analysis. Int J Rheum Dis. 2014;17:671–8.

    Article  CAS  PubMed  Google Scholar 

  20. Al K, Csernok E, Munch D, et al. Use of highly sensitive C-reactive protein for follow-up of Wegener’s granulomatosis. J Rheumatol. 2010;37:2319–25.

    Article  Google Scholar 

  21. Puechal X, Chauveau M, Mankes CJ. Temporal Doppler-flow studies for suspected giant-cell arteritis. Lancet. 1995;345(8962):1437–8.

    Article  CAS  PubMed  Google Scholar 

  22. Romera-Villegas A, Vila-Coll R, Poca-Dias V, et al. The role of color duplex sonography in the diagnosis of giant cell arteritis. J Ultrasound Med. 2004;23(11):1493–8.

    PubMed  Google Scholar 

  23. Bley TA, Uhl M, Carew J, et al. Diagnostic value of high-resolution MR imaging in giant cell arteritis. AJNR Am J Neuroradiol. 2007;28(9):1722–7.

    Article  CAS  PubMed  Google Scholar 

  24. Fletcher T, Espinola D. Positron emission tomography in the diagnosis of giant cell arteritis. Clin Nucl Med. 2004;29(10):617–9.

    Article  PubMed  Google Scholar 

  25. Szmodis M, Reba R, Earl-Graef D. Positron emission tomography in the diagnosis and management of giant cell arteritis. Headache. 2007;47(8):1216–9.

    Article  PubMed  Google Scholar 

  26. Roche N, Filbroght J, Wagner A, et al. Correlation of interleukin-6 production and disease activity in polimyalgia rheumatica and giant cell arteritis. Arthritis Rheum. 1993;36(9):1286–94.

    Article  CAS  PubMed  Google Scholar 

  27. Unizony S, Dasgupta B, Fisheleva E, et al. Design of the tocilizumab in giant cell arteritis trial. Int J Rheumatol. 2013;2013:912562.

    PubMed Central  PubMed  Google Scholar 

  28. Espígol-Frigolé G, Corbera-Bellalta M, Planas-Rigol E, et al. Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. Ann Rheum Dis. 2013;72:1481–7.

    Article  PubMed  Google Scholar 

  29. Bottazzi B, Garlanda C, Cotena A, et al. The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity. Immunol Rev. 2009;227:9–18.

    Article  CAS  PubMed  Google Scholar 

  30. Baldini M, Maugeri N, Ramirez GA, et al. Selective up-regulation of the soluble pattern-recognition receptor pentraxin 3 and of vascular endothelial growth factor in giant cell arteritis: relevance for recent optic nerve ischemia. Arthritis Rheum. 2012;64:854–65.

    Article  CAS  PubMed  Google Scholar 

  31. Baerlecken N, Linnemann A, Gross W, et al. Association of ferritin autoantibodies with giant cell arteritis/polymyalgia rheumatica. Ann Rheum Dis. 2012;71:943–7.

    Article  CAS  PubMed  Google Scholar 

  32. Churg J, Strauss L. Allergic Granulomatosis, allergic angiitis, and periarteritis nodosa. Am J Pathol. 1951;27:277–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Takeuchi S, Kimura S, Soma Y, et al. Lysosomal-associated membrane protein-2 plays an important role in the pathogenesis of primary cutaneous vasculitis. Rheumatology (Oxford). 2013;52(9):1592–8.

    Article  CAS  Google Scholar 

  34. Isobe M. Takayasu arteritis revisited: current diagnosis and treatment. Int J Cardiol. 2013;168(1):3–10.

    Article  PubMed  Google Scholar 

  35. Grobe K, Witte T, Moosig F, et al. Association of ferritin antibodies with Takayasu arteritis. Clin Rheumatol. 2014;33(10):1523–6.

    Article  Google Scholar 

  36. Matsuyama A, Sakai N, Ishigami M, et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis. Circulation. 2003;108:1469–73.

    Article  CAS  PubMed  Google Scholar 

  37. Noris M, Daina E, Gamba S, et al. Interleukin-6 and RANTES in Takayasu arteritis: a guide for therapeutic decisions? Circulation. 1999;100(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  38. Noguchi S, Numano F, Gravanis MB, et al. Increased levels of soluble forms of adhesion molecules in Takayasu arteritis. Int J Cardiol. 1998;66(Suppl1):S23–33. discussion S5–6.

    Article  PubMed  Google Scholar 

  39. Sun Y, Ma L, Yan F, et al. MMP-9 and IL-6 are potential biomarkers for disease activity in Takayasu’s arteritis. Int J Cardiol. 2012;156:236–8.

    Article  PubMed  Google Scholar 

  40. Alibaz-Oner F, Yentür SP, Saruhan-Direskeneli G, et al. Serum cytokine profiles in Takayasu’s arteritis: search for biomarkers. Clin Exp Rheumatol 2014, Dec 1.

  41. Dagna L, Salvo F, Tiraboschi M, et al. Pentraxin-3 as a marker of disease activity in Takayasu arteritis. Ann Intern Med. 2011;155:425–33.

    Article  PubMed  Google Scholar 

  42. Ishihara T, Haraguchi G, Kamiishi T, et al. Sensitive assessment of activity of Takayasu’s arteritis by pentraxin3, a new biomarker. J Am Coll Cardiol. 2011;57:1712–3.

    Article  PubMed  Google Scholar 

  43. Ishihara T, Haraguchi G, Tezuka D, et al. Diagnosis and assessment of Takayasu arteritis by multiple biomarkers. Circ J. 2013;77:477–83. In this study, 45 patients were enrolled; 28 were grouped in an active phase as evidenced by clinical recurrence within 2 years of blood sampling. Authors found that PTX3 and MMP-9 could be sensitive biomarkers for assessing TA activity.

    Article  CAS  PubMed  Google Scholar 

  44. Tombetti E, Di Chio M, Sartorelli S, et al. Systemic pentraxin-3 levels reflect vascular enhancement and progression in Takayasu arteritis. Arthritis Res Ther. 2014;16(6):479.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Lee K, Cho A, Choi Y, et al. The role of (18) F-fluorodeoxyglucose-positron emission tomography in the assessment of disease activity in patients with Takayasu arteritis. Arthritis Rheum. 2012;64:866–75.

    Article  PubMed  Google Scholar 

  46. Karapolat I, Kalfa M, Keser G, et al. Comparison of F18-FDG PET/CT findings with current clinical disease status in patients with Takayasu’s arteritis. Clin Exp Rheumatol. 2013;31(1 Suppl 75):S15–21.

    CAS  PubMed  Google Scholar 

  47. Cheng Y, Ly N, Wang Z, et al. 18-FDG-PET in assessing disease activity in Takayasu arteritis: a meta-analysis. Clin Exp Rheumatol. 2013;31(1 Suppl 75):S22–7.

    CAS  PubMed  Google Scholar 

  48. Zhao J, Wang X. Clinical significance of anti-neutrophil cytoplasmic antibodies and anti-endothelial cell antibodies in children with Kawasaki disease. Zhongguo Dang Dai Er Ke Za Zhi. 2014;16(7):740–4.

    CAS  PubMed  Google Scholar 

  49. Kentsis A, Shulman A, Ahmed S, et al. Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease. EMBO Mol Med. 2013;5:210–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Billing P, Keithley E, Harris J. Evidence linking the 68-kilodalton antigen identified in progressive sensorineural hearing loss patient sera with heat shock protein 70. Ann Otol Rhinol Laryngol. 1995;104:181–8.

    Article  Google Scholar 

  51. Bloch D, San Martin J, Rauch S, et al. Serum antibodies to heat shock protein 70 in sensorineural hearing loss. Arch Otolaryngol Head Neck Surg. 1995;121:1167–71.

    Article  CAS  PubMed  Google Scholar 

  52. Bloch D, Gutierrez J, Guerriero V, et al. Recognition of a dominant epitope in bovine heat-shock protein 70 in inner ear disease. Laryngoscope. 1999;109:621–5.

    Article  CAS  PubMed  Google Scholar 

  53. Bonaguri C, Orsoni J, Russo A, et al. Cogan’s syndrome: anti-Hsp70 antibodies are a serological marker in the typical form. Isr Med Assoc J. 2014;16(5):285–8.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Rodolfo Perez-Alamino and Hernán Maldonado-Ficco declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Perez-Alamino.

Additional information

This article is part of the Topical Collection on Vasculitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Alamino, R., Maldonado-Ficco, H. New Insights on Biomarkers in Systemic Vasculitis. Curr Rheumatol Rep 17, 12 (2015). https://doi.org/10.1007/s11926-015-0497-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-015-0497-0

Keywords

Navigation