Log in

Expanding Use of New Technology Creates New Challenges in Preventing and Managing Infections: a Review of Diagnostic and Management Considerations for Infections Among Patients with Long-Term Invasive Devices for Advanced Heart Failure

  • Healthcare Associated Infections (G Bearman and D Morgan, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Although still a relatively new technology, long-term left ventricular assist devices (LVADs) for management of advanced heart failure is rapidly increasing. Initially designed as a bridge to transplant, these invasive devices are increasingly used as a destination therapy, creating unique and long-term infection risks. The aim of this comprehensive review is to highlight current evidence about the prevention, diagnosis, and management of LVAD-specific infections.

Recent Findings

There are two recent, major societal guidelines (The International Society for Heart and Lung Transplantation, 2017, and the American Society of Transplantation, 2019) specifically on the diagnosis and management of infections in LVAD patients. A third guideline from the European Association for Cardio-Thoracic Surgery (2019) on general LVAD management contains a section on infection management. Recommendations tend to be concordant across the guidelines without major disagreements and suggest that for superficial infections, limited-course durations of antimicrobials are acceptable. For infections of deeper portions of the device, long-term antimicrobial regimens, often with chronic suppressive strategies remain the mainstay of treatment; however, this recommendation is based primarily on expert opinion as high-quality evidence to support best practices remains limited. The role of surgical management remains unknown.

Summary

Management of long-term, device-related infections in patients with advanced heart failure is challenging and should include input from a multi-disciplinary team of providers to determine the best management strategy. A strong emphasis on best prevention practices is a necessity. With this relatively new technology, evidence-based data to guide best practices remains limited and is an important area of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

VAD:

Ventricular assist device

LVADs:

Left ventricular assist devices

MCS:

Mechanical circulatory support

BTT:

Bridge to transplant

DT:

Destination therapy

CF-LVAD:

Continuous-flow left ventricular assist device

DLI:

Driveline infection

AST:

American Society of Transplantation

ISHLT:

International Society for Heart and Lung Transplantation

EACTS:

European Association for Cardio-Thoracic Surgery

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017. https://doi.org/10.1161/CIR.0000000000000485.

  2. Cook JL, Colvin M, Francis GS, et al. Recommendations for the use of mechanical circulatory support: ambulatory and community patient. Care: A Scientific Statement From the American Heart Association. Circulation. (2017. https://doi.org/10.1161/CIR.0000000000000507.

  3. Briasoulis A, Inampudi C, Akintoye E, Adegbala O, Alvarez P, Bhama J. Trends in utilization, mortality, major complications, and cost after left ventricular assist device implantation in the United States (2009 to 2014). Am J Cardiol. 2018;121:1214–8.

    Article  PubMed  Google Scholar 

  4. Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36:1080–6.

    Article  PubMed  Google Scholar 

  5. Miller LW, Rogers JG. Evolution of left ventricular assist device therapy for advanced heart failure: a review. JAMA Cardiol. 2018;3:650.

    Article  PubMed  Google Scholar 

  6. Sajgalik P, Grupper A, Edwards BS, Kushwaha SS, Stulak JM, Joyce DL, et al. Current status of left ventricular assist device therapy. Mayo Clin Proc. 2016;91:927–40.

    Article  PubMed  Google Scholar 

  7. Miller RJH, Moayedi Y, Sharma A, Haddad F, Hiesinger W, Banerjee D. Transplant outcomes in destination therapy left ventricular assist device patients: ASAIO J. 2019; 1.

  8. Teuteberg JJ, Stewart GC, Jessup M, Kormos RL, Sun B, Frazier OH, et al. Implant strategies change over time and impact outcomes. JACC Heart Fail. 2013;1:369–78.

    Article  PubMed  Google Scholar 

  9. Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC Jr, Colombo PC, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376:440–50.

    Article  PubMed  Google Scholar 

  10. Zhigalov K, Mashhour A, Szczechowicz M, Mkalaluh S, Karagezian S, Gogia I, et al. Clinical outcome and comparison of three different left ventricular assist devices in a high-risk cohort. Artif Organs. 2018;42:1035–42.

    Article  PubMed  Google Scholar 

  11. Pavlovic NV, Randell T, Madeira T, Hsu S, Zinoviev R, Abshire M. Risk of left ventricular assist device driveline infection: a systematic literature review. Heart Lung. 2019;48:90–104.

    Article  PubMed  Google Scholar 

  12. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34:1495–504.

    Article  PubMed  Google Scholar 

  13. Adesiyun TA, McLean RC, Tedford RJ, Whitman GJR, Sciortino CM, Conte JV, et al. Long-term follow-up of continuous flow left ventricular assist devices: complications and predisposing risk factors. Int J Artif Organs. 2017;40:622–8.

    Article  PubMed  Google Scholar 

  14. Akhter SA, Badami A, Murray M, Kohmoto T, Lozonschi L, Osaki S, et al. Hospital readmissions after continuous-flow left ventricular assist device implantation: incidence, causes, and cost analysis. Ann Thorac Surg. 2015;100:884–9.

    Article  PubMed  Google Scholar 

  15. Gosev I, Kiernan MS, Eckman P, Soleimani B, Kilic A, Uriel N, et al. Long-term survival in patients receiving a continuous-flow left ventricular assist device. Ann Thorac Surg. 2018;105:696–701.

    Article  PubMed  Google Scholar 

  16. Topkara VK, Kondareddy S, Malik F, Wang I-W, Mann DL, Ewald GA, et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg. 2010;90:1270–7.

    Article  PubMed  Google Scholar 

  17. Gordon RJ, Weinberg AD, Pagani FD, Slaughter MS, Pappas PS, Naka Y, et al. Prospective, multicenter study of ventricular assist device infections. Circulation. 2013;127:691–702.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gordon RJ, Quagliarello B, Lowy FD Ventricular assist device-related infections. 12.

  19. Koval CE, Stosor V, the AST ID Community of Practice. Ventricular assist device-related infections and solid organ transplantation—guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019. https://doi.org/10.1111/ctr.13552.

  20. Aslam S, Hernandez M, Thornby J, Zeluff B, Darouiche RO. Risk factors and outcomes of fungal ventricular-assist device infections. Clin Infect Dis. 2010;50:664–71.

    Article  PubMed  Google Scholar 

  21. Goldstein DJ, Naftel D, Holman W, Bellumkonda L, Pamboukian SV, Pagani FD, et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transpl. 2012;31:1151–7.

    Article  Google Scholar 

  22. Sharma V, Deo SV, Stulak JM, Durham LA 3rd, Daly RC, Park SJ, et al. Driveline infections in left ventricular assist devices: implications for destination therapy. Ann Thorac Surg. 2012;94:1381–6.

    Article  PubMed  Google Scholar 

  23. Nienaber JJ, Kusne S, Riaz T, Walker RC, Baddour LM, Wright AJ, et al. Clinical manifestations and management of left ventricular assist device-associated infections. Clin Infect Dis. 2013;57:1438–48.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simeon S, Flecher E, Revest M, Niculescu M, Roussel JC, Michel M, et al. Left ventricular assist device-related infections: a multicentric study. Clin Microbiol Infect. 2017;23:748–51.

    Article  PubMed  CAS  Google Scholar 

  25. Hannan MM, **e R, Cowger J, Schueler S, de By T, Dipchand AI, et al. Epidemiology of infection in mechanical circulatory support: a global analysis from the ISHLT Mechanically Assisted Circulatory Support Registry. J Heart Lung Transplant. 2019;38:364–73.

    Article  PubMed  Google Scholar 

  26. Tong MZ, Smedira NG, Soltesz EG, Starling RC, Koval CE, Porepa L, et al. Outcomes of heart transplant after left ventricular assist device specific and related infection. Ann Thorac Surg. 2015;100:1292–7.

    Article  PubMed  Google Scholar 

  27. Hannan MM, Husain S, Mattner F, Danziger-Isakov L, Drew RJ, Corey GR, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant. 2011;30:375–84.

    Article  PubMed  Google Scholar 

  28. Warren JW, Tenney JH, Hoopes JM, Muncie HL, Anthony WC. A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis. 1982;146:719–23.

    Article  PubMed  CAS  Google Scholar 

  29. Ankersmit HJ, Tugudea S, Spanier T, et al. Activation-induced T-cell death and immune dysfunction after implantation of left-ventricular assist de vice. Lancet. 1999;354:550–5.

    Article  PubMed  CAS  Google Scholar 

  30. Kimball P, Flattery M, Kasirajan V. T-cell response to staphylococcal enterotoxin B is reduced among heart failure patients on ventricular device support. Transplant Proc. 2006;38:3695–6.

    Article  PubMed  CAS  Google Scholar 

  31. Kimball PM, Flattery M, McDougan F, Kasirajan V. Cellular immunity impaired among patients on left ventricular assist device for 6 months. Ann Thorac Surg. 2008;85:1656–61.

    Article  PubMed  Google Scholar 

  32. Wrobel CA, Drazner MH, Ayers CR, Pham DD, la Hoz RM, Grodin JL, et al. Delayed febrile response with bloodstream infections in patients with continuous-flow left ventricular assist devices. J Investig Med. 2019;67:653–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Trachtenberg BH, Cordero-Reyes A, Elias B, Loebe M. A review of infections in patients with left ventricular assist devices: prevention, diagnosis and management. Methodist DeBakey Cardiovasc J. 2015;11:28–32.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leuck A-M. Left ventricular assist device driveline infections: recent advances and future goals. J Thorac Dis. 2015;7:7.

    Google Scholar 

  35. Lehnert AL, Hart A, Brouse SD, Charnigo RJ, Branam S, Guglin ME. Left ventricular assist device-related infections: does the time of onset matter? J Artif Organs. 2019;22:98–103.

    Article  PubMed  Google Scholar 

  36. Castrodeza J, Gonzalez O, Woods A, et al. Infection predisposes to thrombosis during long term VAD support. J Heart Lung Transplant. 2018;37:S362–3.

    Article  Google Scholar 

  37. Kusne S, Mooney M, Danziger-Isakov L, Kaan A, Lund LH, Lyster H, et al. An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection. J Heart Lung Transplant. 2017;36:1137–53.

    Article  PubMed  Google Scholar 

  38. Potapov EV, Antonides C, Crespo-Leiro MG, Combes A, Färber G, Hannan MM, et al. 2019 EACTS expert consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg. 2019;56:230–70.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shroff GS, Ocazionez D, Akkanti B, Vargas D, Garza A, Gupta P, et al. CT imaging of complications associated with continuous-flow left ventricular assist devices (LVADs). Semin Ultrasound CT MR. 2017;38:616–28.

    Article  PubMed  Google Scholar 

  40. Aslam S, **e R, Cowger J, Kirklin JK, Chu VH, Schueler S, et al. Bloodstream infections in mechanical circulatory support device recipients in the International Society of Heart and Lung Transplantation Mechanically Assisted Circulation Support Registry: epidemiology, risk factors, and mortality. J Heart Lung Transplant. 2018;37:1013–20.

    Article  PubMed  Google Scholar 

  41. Koval CE, Thuita L, Moazami N, Blackstone E. Evolution and impact of drive-line infection in a large cohort of continuous-flow ventricular assist device recipients. J Heart Lung Transplant. 2014;33:1164–72.

    Article  PubMed  Google Scholar 

  42. Bomholt T, Moser C, Sander K, Boesgaard S, Kober L, Olsen PS, et al. Driveline infections in patients supported with a HeartMate II: incidence, aetiology and outcome. Scand Cardiovasc J. 2011;45:273–8.

    Article  PubMed  Google Scholar 

  43. John R, Aaronson KD, Pae WE, Acker MA, Hathaway DR, Najarian KB, et al. Drive-line infections and sepsis in patients receiving the HVAD system as a left ventricular assist device. J Heart Lung Transplant. 2014;33:1066–73.

    Article  PubMed  Google Scholar 

  44. Hieda M, Sata M, Seguchi O, et al. Importance of early appropriate intervention including antibiotics and wound care for device-related infection in patients with left ventricular assist device. TransplantProc. 2014;46:907–10.

    CAS  Google Scholar 

  45. McCandless SP, Ledford ID, Mason NO, Alharethi R, Rasmusson BY, Budge D, et al. Comparing velour versus silicone interfaces at the driveline exit site of HeartMate II devices: infection rates, histopathology, and ultrastructural aspects. Cardiovasc Pathol. 2015;24:71–5.

    Article  PubMed  CAS  Google Scholar 

  46. O’Horo JC, Abu Saleh OM, Stulak JM, Wilhelm MP, Baddour LM, Rizwan Sohail M. Left ventricular assist device infections: a systematic review. ASAIO J. 2018;64:287–94.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dell’Aquila AM, Mastrobuoni S, Alles S, Wenning C, Henryk W, Schneider SR, et al. Contributory role of fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis and clinical management of infections in patients supported with a continuous-flow left ventricular assist device. Ann Thorac Surg. 2016;101:87–94 discussion 94.

    Article  PubMed  Google Scholar 

  48. Levy DT, Guo Y, Simkins J, Puius YA, Muggia VA, Goldstein DJ, et al. Left ventricular assist device exchange for persistent infection: a case series and review of the literature. Transpl Infect Dis. 2014;16:453–60.

    Article  PubMed  CAS  Google Scholar 

  49. Shaikh AF, Joseph SM, Lima B, Hall SA, Malyala R, Rafael AE, et al. HeartMate II left ventricular assist device pump exchange: a single-institution experience. Thorac Cardiovasc Surg. 2017;65:410–4.

    Article  PubMed  Google Scholar 

  50. Chamogeorgakis T, Koval CE, Smedira NG, Starling RC, Gonzalez-Stawinski GV. Outcomes associated with surgical management of infections related to the HeartMate II left ventricular assist device: implications for destination therapy patients. J Heart Lung Transplant. 2012;31:904–6.

    Article  PubMed  Google Scholar 

  51. Balsam LB, Jacoby A, Louie E, Levine JP. Long-term success with driveline exit site relocation for deep driveline infection in left ventricular assist device patients. Innov Phila. 2017;12:440–5.

    Article  Google Scholar 

  52. Masood MF, Romano M, Haft JW, Hasan R, Aaronson K, Pagani F. Effectiveness of continuous flow left ventricular assist device exchange for recurrence of major drive line and pump pocket infection. J Heart Lung Transplant. 2014;33:S196–7.

    Article  Google Scholar 

  53. Bauer TM, Choi JH, Luc JGY, Weber MP, Moncho Escrivá E, Patel S, et al. Device exchange versus nonexchange modalities in left ventricular assist device-specific infections: a systematic review and meta-analysis. Artif Organs. 2019;43:448–57.

    Article  PubMed  Google Scholar 

  54. Balsam LB, Louie E, Hill F, Levine J, Phillips MS. Mycobacterium chimaera left ventricular assist device infections. J Card Surg. 2017;32:402–4.

    Article  PubMed  Google Scholar 

  55. Pieri M, Arlt G, Müller M, Falk V, Krabatsch T, Potapov E. Surgical treatment of mediastinitis with omentoplasty in ventricular assist device patients: report of referral center experience. J Heart Lung Transplant. 2016;35:S254.

    Article  Google Scholar 

  56. Kyvernitakis A, Pappas O, Farmakiotis D, Horn ET, Benza RL, Bailey SH, et al. Bloodstream infections in continuous flow left ventricular assist device recipients: diagnostic and clinical implications. ASAIO J. 2019;65:798–805.

    Article  PubMed  Google Scholar 

  57. Akin S, Muslem R, Constantinescu AA, Manintveld OC, Birim O, Brugts JJ, et al. 18F-FDG PET/CT in the diagnosis and management of continuous flow left ventricular assist device infections: a case series and review of the literature. ASAIO J. 2018;64:e11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Simon D, Fischer S, Grossman A, Downer C, Hota B, Heroux A, et al. Left ventricular assist device–related infection: treatment and outcome. Clin Infect Dis. 2005;40:1108–15.

    Article  PubMed  Google Scholar 

  59. Jennings DL, Chopra A, Chambers R, Morgan JA. Clinical outcomes associated with chronic antimicrobial suppression therapy in patients with continuous-flow left ventricular assist devices. Artif Organs. 2014;38:875–9.

    Article  PubMed  CAS  Google Scholar 

  60. Chinn R, Dembitsky W, Eaton L, Chillcott S, Stahovich M, Rasmusson B, et al. Multicenter experience: prevention and management of left ventricular assist device infections. ASAIO J. 2005;51:461–70.

    Article  PubMed  Google Scholar 

  61. Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 2013;70:195–283.

    Article  PubMed  CAS  Google Scholar 

  62. Rose EA, Stevenson LW, Tierney AR. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;9.

  63. Walker PC, DePestel DD, Miles NA, Malani PN. Surgical infection prophylaxis for left ventricular assist device implantation. J Card Surg. 2011;26:440–3.

    Article  PubMed  Google Scholar 

  64. Aburjania N, Ertmer BM, Farid S, Berg M, Nienaber JJC, Tchantchaleishvili V, et al. Single versus multidrug regimen for surgical infection prophylaxis in left ventricular assist device implantation. ASAIO J. 2018;64:735–40.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Toda K, Yonemoto Y, Fujita T, Shimahara Y, Sato S, Nakatani T, et al. Risk analysis of bloodstream infection during long-term left ventricular assist device support. Ann Thorac Surg. 2012;94:1387–93.

    Article  PubMed  Google Scholar 

  66. Branch-Elliman W, O’Brien W, Strymish J, Itani K, Wyatt C, Gupta K. Association of duration and type of surgical prophylaxis with antimicrobial-associated adverse events. JAMA Surg. 2019;154:590.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Baronetto A, Centofanti P, Attisani M, Ricci D, Mussa B, Devotini R, et al. A simple device to secure ventricular assist device driveline and prevent exit-site infection. Interact Cardiovasc Thorac Surg. 2014;18:415–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cagliostro B, Levin AP, Fried J, et al. Continuous-flow left ventricular assist devices and usefulness of a standardized strategy to reduce drive-line infections. J Heart Lung Transplant. 2016;35:108–14.

    Article  PubMed  Google Scholar 

  69. Stulak JM, Davis ME, Haglund N, Dunlay S, Cowger J, Shah P, et al. Adverse events in contemporary continuous-flow left ventricular assist devices: a multi-institutional comparison shows significant differences. J Thorac Cardiovasc Surg. 2016;151:177–89.

    Article  PubMed  Google Scholar 

  70. Bhatia N, Voelkel A, Hussain Z, Sharma U, Slaughter M, Birks E, et al. Safety and feasibility of induction immunosuppression when driveline infection is an indication for cardiac transplantation. Thorac Cardiovasc Surg. 2015;63:675–83.

    Article  PubMed  Google Scholar 

  71. Arabía FA, Milano CA, Mahr C, McGee EC Jr, Mokadam NA, Rame JE, et al. Biventricular support with intracorporeal, continuous flow, centrifugal ventricular assist devices. Ann Thorac Surg. 2018;105:548–55.

    Article  PubMed  Google Scholar 

  72. Schmack B, Weymann A, Ruschitzka F, Autschbach R, Raake PW, Jurrmann N, et al. Successful support of biventricular heart failure patients by new EXCOR® adult pumps with bileaflet valves: a prospective study. Clin Res Cardiol. 2018;107:413–20.

    Article  PubMed  Google Scholar 

  73. Copeland JG, Copeland H, Gustafson M, Mineburg N, Covington D, Smith RG, et al. Experience with more than 100 total artificial heart implants. J Thorac Cardiovasc Surg. 2012;143:727–34.

    Article  PubMed  Google Scholar 

  74. Torregrossa G, Michiel M, Varghese R, et al. Results with Syncardia Total Artificial Heart Beyond 1 year. ASAIO J. 2014;60:626–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Diane E. Young, MLS and Megan C. McNichol, MLS, AHIP from the Beth Israel Deaconess Medical Center Information Systems/Knowledge Services for her assistance in the literature review.

Diane E. Young, MLS, Information Specialist

Information Systems - Knowledge Services

Beth Israel Deaconess Medical Center

Boston, MA 02215

Megan C. McNichol, MLS, AHIP|Manager

Information Systems – Knowledge Services

Beth Israel Deaconess Medical Center

Boston, MA 02215

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew S. L. Lee or Westyn Branch-Elliman.

Ethics declarations

Conflict of Interest

Matthew S.L. Lee, MD, and Natasha L. Altman, MD, declare no conflict of interest.

Westyn Branch-Elliman, MD, MMSc, declare no conflict of interest. Salary is supported by grant NHLBI 1K12HL138049-01.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Healthcare Associated Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.S.L., Altman, N.L. & Branch-Elliman, W. Expanding Use of New Technology Creates New Challenges in Preventing and Managing Infections: a Review of Diagnostic and Management Considerations for Infections Among Patients with Long-Term Invasive Devices for Advanced Heart Failure. Curr Infect Dis Rep 22, 16 (2020). https://doi.org/10.1007/s11908-020-00724-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-020-00724-z

Keywords

Navigation