Log in

Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers or particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention. Diabetes Report Card 2015. Atlanta: Centers for Disease Control and Prevention, US Dept of Health and Human Services; 2015.

    Google Scholar 

  2. Ledermann HM. Is maturity onset diabetes at young age (MODY) more common in Europe than previously assumed? Lancet. 1995;345(8950):648.

    Article  CAS  PubMed  Google Scholar 

  3. Turner RC et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999;281(21):2005–12.

    Article  CAS  PubMed  Google Scholar 

  4. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2016;39(Suppl 1):S13-22.

  5. Cho YS et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44(1):67–72.

    Article  CAS  Google Scholar 

  6. Gaulton KJ et al. Genetic fine map** and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47(12):1415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kooner JS et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43(10):984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mahajan A et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234–44.

    Article  CAS  PubMed  Google Scholar 

  9. Morris AP et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44(9):981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robertson RP et al. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53 Suppl 1:S119–24.

    Article  CAS  PubMed  Google Scholar 

  11. Larsen N et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qin J et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  PubMed  Google Scholar 

  13. Karlsson FH et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.

    Article  CAS  PubMed  Google Scholar 

  14. Knowler WC et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  15. Knowler WC et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374(9702):1677–86.

    Article  PubMed  Google Scholar 

  16. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837-53.

  17. Holman RR et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  18. Stein SA, Lamos EM, Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf. 2013;12(2):153–75.

    Article  CAS  PubMed  Google Scholar 

  19. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18.

    Article  PubMed  Google Scholar 

  20. Scirica BM et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz SS, I Ahmed. Sodium-glucose cotransporter 2 inhibitors: an evidence-based practice approach to their use in the natural history of type 2 diabetes. Curr Med Res Opin. 2016;32(5):907–19.

  22. U.S. Food and Drug Administration. FDA Drug Safety Communication: FDA revises label of diabetes drug canagliflozin (Invokana, Invokamet) to include updates on bone fracture risk and new information on decreased bone mineral density. 2015 [Last accessed February 19, 2016]; Available from: http://www.fda.gov/Drugs/DrugSafety/ucm461449.htm.

  23. Hanefeld M, Monnier L, Schnell O, Owen D. Early Treatment with Basal Insulin Glargine in People with Type 2 Diabetes: Lessons from ORIGIN and Other Cardiovascular Trials. Diabetes Ther. 2016;7(2):187-201.

  24. Yu J et al. The long-term effects of bariatric surgery for type 2 diabetes: systematic review and meta-analysis of randomized and non-randomized evidence. Obes Surg. 2015;25(1):143–58.

    Article  PubMed  Google Scholar 

  25. Thomson JA et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  28. Choi J et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol. 2015;33(11):1173–81. Extensive study comparing several iPS and ES lines using bioinformatic tools.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. D’Amour KA et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401. These authors were the first to differentiate human ES cells into endocrine cells; these cells had an insulin content similar to adult islet cells and released insulin in response to multiple secretory stimuli.

    Article  PubMed  Google Scholar 

  30. Jiang J et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells. 2007;25(8):1940–53.

    Article  CAS  PubMed  Google Scholar 

  31. Kroon E et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52. In this paper, human ES cells were differentiated into endocrine cells that were capable of secreting insulin in response to glucose.

    Article  CAS  PubMed  Google Scholar 

  32. Rezania A et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bruin JE et al. Treating diet-induced diabetes and obesity with human embryonic stem cell-derived pancreatic progenitor cells and antidiabetic drugs. Stem Cell Rep. 2015;4(4):605–20.

    Article  CAS  Google Scholar 

  34. Rezania A et al. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells. 2013;31(11):2432–42.

    Article  CAS  PubMed  Google Scholar 

  35. Bruin JE et al. Accelerated Maturation of Human Stem Cell-Derived Pancreatic Progenitor Cells into Insulin-Secreting Cells in Immunodeficient Rats Relative to Mice. Stem Cell Rep. 2015;5(6):1081–96.

    Article  CAS  Google Scholar 

  36. Basford CL et al. The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia. 2012;55(2):358–71.

    Article  CAS  PubMed  Google Scholar 

  37. Nostro MC et al. Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development. 2011;138(5):861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bruin JE et al. Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res. 2014;12(1):194–208.

    Article  CAS  PubMed  Google Scholar 

  39. Rezania A et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–33. This is the first study to describe the in vitro generation of functional “beta-like” cells from human pluripotent stem cells.

    Article  CAS  PubMed  Google Scholar 

  40. Pagliuca FW et al. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159(2):428–39. This landmark paper was the first to report a scalable differentiation protocol to create glucose-responsive “beta-like” cells from human induced pluripotent stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Russ HA et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 2015;34(13):1759–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park IH et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134(5):877–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kudva YC et al. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cell Transl Med. 2012;1(6):451–61.

    Article  CAS  Google Scholar 

  44. Drawnel FM et al. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep. 2014;9(3):810–21.

    Article  CAS  PubMed  Google Scholar 

  45. Bhatt S et al. Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. Cell Metab. 2015;22(2):239–52. This study is focused on using fibroblasts and iPS cells to define the signficance of miR200 in regulating pathways that have the potential to protect some patients with long-standing type 1 diabetes from develo** complications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iovino S et al. Genetic insulin resistance is a potent regulator of gene expression and proliferation in human iPS cells. Diabetes. 2014;63(12):4130–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Teo AK et al. Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J Biol Chem. 2013;288(8):5353–6. This is the first paper to describe the derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young (MODY).

  48. Teo AK, et al. Early Developmental Perturbations in a Human Stem Cell Model of MODY5/HNF1B Pancreatic Hypoplasia. Stem Cell Reports. 2016;6(3):357–67. This is the fist paper that describes a human stem cell model of MODY5 and provides clues to the phenotype in MODY5 patients.

  49. Hua H et al. iPSC-derived beta cells model diabetes due to glucokinase deficiency. J Clin Invest. 2013;123(7):3146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shang L et al. beta-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes. 2014;63(3):923–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tulpule A et al. Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction. Cell Stem Cell. 2013;12(6):727–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iovino S et al. Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance. Proc Natl Acad Sci U S A. 2016;113(7):1889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahfeldt T et al. Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol. 2012;14(2):209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Siller R et al. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Rep. 2015;4(5):939–52.

    Article  CAS  Google Scholar 

  55. Teo AK et al. Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools. Mol Metab. 2015;4(9):593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang P et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6(5):363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Callaway E. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530(7588):18.

    Article  CAS  PubMed  Google Scholar 

  58. Agulnick AD et al. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo. Stem Cell Transl Med. 2015;4(10):1214–22. This article was written by the researchers at Viacyte, the company conducting the first clinical trials of “beta-like” differentiated human embryonic stem cells in type 1 diabetics.

    Article  CAS  Google Scholar 

  59. Schulz TC et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One. 2012;7(5):e37004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Viacyte. A safety, tolerability, and efficacy study of VC-01 combination product in subjects with type 1 diabetes mellitus. In: ClinicalTrials.gov [Internet]. Bethesda: National Library of Medicine (US); 2015. [cited 2016 Jan 21]; Available from: http://clinicaltrials.gov/ct2/show/NCT02239354.

    Google Scholar 

  61. Ramos-Mejia V et al. iPSC lines that do not silence the expression of the ectopic reprogramming factors may display enhanced propensity to genomic instability. Cell Res. 2010;20(10):1092–5.

    Article  PubMed  Google Scholar 

  62. Laurent LC et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8(1):106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miura K et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27(8):743–5.

    Article  CAS  PubMed  Google Scholar 

  64. Bruin JE et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia. 2013;56(9):1987–98.

    Article  PubMed  Google Scholar 

  65. Motte E et al. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Physiol Endocrinol Metab. 2014;307(9):E838–46.

    Article  CAS  PubMed  Google Scholar 

  66. Szot GL et al. Tolerance induction and reversal of diabetes in mice transplanted with human embryonic stem cell-derived pancreatic endoderm. Cell Stem Cell. 2015;16(2):148–57.

    Article  CAS  PubMed  Google Scholar 

  67. Lui KO et al. Tolerance induction to human stem cell transplants with extension to their differentiated progeny. Nat Commun. 2014;5:5629.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit N. Kulkarni.

Ethics declarations

Conflict of Interest

Sevim Kahraman, Erin R. Okawa, and Rohit N. Kulkarni declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Sevim Kahraman and Erin R. Okawa contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahraman, S., Okawa, E.R. & Kulkarni, R.N. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?. Curr Diab Rep 16, 70 (2016). https://doi.org/10.1007/s11892-016-0764-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0764-0

Keywords

Navigation