Log in

Blood Tests for Colorectal Cancer Screening in the Standard Risk Population

  • Prevention and Early Detection (R Benamouzig, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Barriers to screening for colorectal cancer (CRC) might be circumvented by using a blood test. New blood markers continue to be discovered, comprising RNA, DNA, and protein. On reviewing the literature on biomarkers in blood, many potentially valuable markers have been described. Those based on DNA have been the best evaluated to date and are not subject to the same specificity problems as fecal immunochemical tests (FIT), but as a class have relatively poorer sensitivity for adenomas. Most other markers have not been taken beyond the most rudimentary clinical assessment, and extremely few have been assessed in the screening context relative to proven screening tests such as FIT and colonoscopy. Adoption of blood tests into screening programs is going to depend on clarification of adequate accuracy for targeted neoplastic lesions in the screening environment and their relative performance and acceptability to existing proven tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. AIHW. Cancer in Australia: an overview, 2014. Canberra: Australian Institute of Health and Welfare Canberra; 2014.

    Google Scholar 

  2. Martens JW et al. DNA methylation as a biomarker in breast cancer. Future Oncol. 2009;5(8):1245–56.

    Article  CAS  PubMed  Google Scholar 

  3. Osborne J et al. Sample preference for colorectal cancer screening tests: blood or stool? OJPM. 2012;2:326–31.

    Article  Google Scholar 

  4. Weber H. Nachweis des blutes in dem magen- und dem darminhalt. Berl Klin Wochenachr. 1893;30:441.

    Google Scholar 

  5. Gurling KJ. The occult blood test. Postgrad Med J. 1951;27(309):345–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Illingworth DG. The choice of occult blood tests in general practice. J Coll Gen Pract. 1965;9:33–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Needham CD, Simpson RG. The benzidine test for occult blood in faces. Q J Med. 1952;21(82):123–33.

    CAS  PubMed  Google Scholar 

  8. Lord SJ, Irwig L, Simes RJ. When is measuring sensitivity and specificity sufficient to evaluate a diagnostic test, and when do we need randomized trials? Ann Intern Med. 2006;144(11):850–5. This study establishes the importance of sensitivity and specificity for diagnostic tests and what processes of validation are necessary.

    Article  PubMed  Google Scholar 

  9. Wilson JM, Jungner YG. Principles and practice of mass screening for disease. Bol Oficina Sanit Panam. 1968;65(4):281–393.

    CAS  PubMed  Google Scholar 

  10. Pepe MS et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001;93(14):1054–61. A key publication in describing the essential phases in develo** and applying new screening tests for cancer.

    Article  CAS  PubMed  Google Scholar 

  11. World Gastroenterology News. W.G. Organisation; 2009.

  12. Imperiale TF et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370(14):1287–97.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson DA et al. Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: a prospective multicenter study. PLoS One. 2014;9(6):e98238. This study demonstrates the phase 2 evaluation of a blood test biomarker (Septin9) and compares it to an established screening test (fecal immunochemical test).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Allison JE et al. Screening for colorectal neoplasms with new fecal occult blood tests: update on performance characteristics. J Natl Cancer Inst. 2007;99(19):1462–70.

    Article  PubMed  Google Scholar 

  15. Levi Z et al. A higher detection rate for colorectal cancer and advanced adenomatous polyp for screening with immunochemical fecal occult blood test than guaiac fecal occult blood test, despite lower compliance rate. A prospective, controlled, feasibility study. Int J Cancer. 2011;128(10):2415–24.

    Article  CAS  PubMed  Google Scholar 

  16. Park DI et al. Comparison of guaiac-based and quantitative immunochemical fecal occult blood testing in a population at average risk undergoing colorectal cancer screening. Am J Gastroenterol. 2010;105(9):2017–25.

    Article  PubMed  Google Scholar 

  17. Smith A et al. Comparison of a brush-sampling fecal immunochemical test for hemoglobin with a sensitive guaiac-based fecal occult blood test in detection of colorectal neoplasia. Cancer. 2006;107:2152–9.

    Article  PubMed  Google Scholar 

  18. Steele RJ et al. Clinical outcomes using a faecal immunochemical test for haemoglobin as a first-line test in a national programme constrained by colonoscopy capacity. United European Gastroenterol J. 2013;1(3):198–205.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Young GP, et al. Advances in fecal occult blood tests: the FIT Revolution. Dig Dis Sci. 2014.

  20. Rabeneck L et al. Fecal immunochemical tests compared with guaiac fecal occult blood tests for population-based colorectal cancer screening. Can J Gastroenterol. 2012;26(3):131–47.

    PubMed Central  PubMed  Google Scholar 

  21. Stracci F, Zorzi M, Grazzini G. Colorectal cancer screening: tests, strategies, and perspectives. Front Public Health. 2014;2:210.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hardcastle JD et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet. 1996;348(9040):1472–7.

    Article  CAS  PubMed  Google Scholar 

  23. Holme O et al. Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: a randomized clinical trial. JAMA. 2014;312(6):606–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kronborg O et al. Randomised study of screening for colorectal cancer with faecal-occult-blood test. Lancet. 1996;348(9040):1467–71.

    Article  CAS  PubMed  Google Scholar 

  25. Mandel JS et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N Engl J Med. 1993;328(19):1365–71.

    Article  CAS  PubMed  Google Scholar 

  26. Elmunzer BJ et al. Effect of flexible sigmoidoscopy-based screening on incidence and mortality of colorectal cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2012;9(12):e1001352.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Mandel JS et al. The effect of fecal occult-blood screening on the incidence of colorectal cancer. N Engl J Med. 2000;343(22):1603–7.

    Article  CAS  PubMed  Google Scholar 

  28. Cole SR et al. Shift to earlier stage at diagnosis as a consequence of the National Bowel Cancer Screening Program. Med J Aust. 2013;198(6):327–30.

    Article  PubMed  Google Scholar 

  29. OECD. Health at a Glance: Europe 2012. OECD Publishing; 2012. doi:10.1787/9789264183896-en.

  30. AIHW. National Bowel Cancer Screening Program monitoring report: 2012–13. Vol. Cancer series No. 84. Canberra: Australian Institute of Health and Welfare Canberra; 2014.

  31. Wee CC, McCarthy EP, Phillips RS. Factors associated with colon cancer screening: the role of patient factors and physician counseling. Prev Med. 2005;41(1):23–9.

    Article  PubMed  Google Scholar 

  32. Worthley DL et al. Screening for colorectal cancer by faecal occult blood test: why people choose to refuse. Intern Med J. 2006;36(9):607–10.

    Article  CAS  PubMed  Google Scholar 

  33. Cole SR et al. Psychosocial variables associated with colorectal cancer screening in South Australia. Int J Behav Med. 2011;18(4):302–9.

    Article  PubMed  Google Scholar 

  34. Adler A et al. Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany. BMC Gastroenterol. 2014;14:183.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Marshall DA et al. Measuring patient preferences for colorectal cancer screening using a choice-format survey. Value Health. 2007;10(5):415–30.

    Article  PubMed  Google Scholar 

  36. Silva JM et al. Detection of epithelial tumour RNA in the plasma of colon cancer patients is associated with advanced stages and circulating tumour cells. Gut. 2002;50(4):530–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Hundt S, Haug U, Brenner H. Blood markers for early detection of colorectal cancer: a systematic review. Cancer Epidemiol Biomarkers Prev. 2007;16(10):1935–53.

    Article  CAS  PubMed  Google Scholar 

  38. Walgenbach-Brunagel G et al. The use of a colon cancer associated nuclear antigen CCSA-2 for the blood based detection of colon cancer. J Cell Biochem. 2008;104(1):286–94.

    Article  CAS  PubMed  Google Scholar 

  39. Bosch LJ et al. Molecular tests for colorectal cancer screening. Clin Colorectal Cancer. 2011;10(1):8–23.

    Article  CAS  PubMed  Google Scholar 

  40. Wong SC et al. Quantification of plasma beta-catenin mRNA in colorectal cancer and adenoma patients. Clin Cancer Res. 2004;10(5):1613–7.

    Article  CAS  PubMed  Google Scholar 

  41. Perrone F et al. Circulating free DNA in a screening program for early colorectal cancer detection. Tumori. 2014;100(2):115–21.

    CAS  PubMed  Google Scholar 

  42. Zhang X et al. Direct serum assay for cell-free bmi-1 mRNA and its potential diagnostic and prognostic value for colorectal cancer. Clin Cancer Res. 2015;21(5):1225–33.

    Article  CAS  PubMed  Google Scholar 

  43. Church TR et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63(2):317–25. A thorough study which assesses the performance of the blood biomarker Septin9 in a screening population. It has many characteristics of phase 3 evaluation with the exception that it is not an intention-to-screen study and so does not factor in acceptability.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Potter NT et al. Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma. Clin Chem. 2014;60(9):1183–91.

    Article  CAS  PubMed  Google Scholar 

  45. Pedersen S, et al. Evaluation of an assay for methylated 1 BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia. BMC Cancer. 2015; In press.

  46. De Chiara L et al. Serum CD26 is related to histopathological polyp traits and behaves as a marker for colorectal cancer and advanced adenomas. BMC Cancer. 2010;10:333.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Otero-Estevez O et al. Serum sCD26 for colorectal cancer screening in family-risk individuals: comparison with faecal immunochemical test. Br J Cancer. 2015;112(2):375–81.

    Article  CAS  PubMed  Google Scholar 

  48. Ritchie SA et al. Low-serum GTA-446 anti-inflammatory fatty acid levels as a new risk factor for colon cancer. Int J Cancer. 2013;132(2):355–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wild N et al. A combination of serum markers for the early detection of colorectal cancer. Clin Cancer Res. 2010;16(24):6111–21.

    Article  CAS  PubMed  Google Scholar 

  50. Ng EK et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58(10):1375–81.

    Article  CAS  PubMed  Google Scholar 

  51. Ardalan Khales S et al. SALL4 as a new biomarker for early colorectal cancers. J Cancer Res Clin Oncol. 2015;141(2):229–35.

    Article  CAS  PubMed  Google Scholar 

  52. Schiedeck TH et al. Diagnosis and monitoring of colorectal cancer by L6 blood serum polymerase chain reaction is superior to carcinoembryonic antigen-enzyme-linked immunosorbent assay. Dis Colon Rectum. 2003;46(6):818–25.

    Article  PubMed  Google Scholar 

  53. Terrin L et al. Relationship between tumor and plasma levels of hTERT mRNA in patients with colorectal cancer: implications for monitoring of neoplastic disease. Clin Cancer Res. 2008;14(22):7444–51.

    Article  CAS  PubMed  Google Scholar 

  54. Wang JY et al. Molecular detection of circulating tumor cells in the peripheral blood of patients with colorectal cancer using RT-PCR: significance of the prediction of postoperative metastasis. World J Surg. 2006;30(6):1007–13.

    Article  PubMed  Google Scholar 

  55. Yadegarazari R et al. Improved real-time rt-PCR assays of two colorectal cancer peripheral blood mRNA biomarkers: a pilot study. Iran Biomed J. 2013;17(1):15–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Lledo SM et al. Real time quantification in plasma of human telomerase reverse transcriptase (hTERT) mRNA in patients with colorectal cancer. Color Dis. 2004;6(4):236–42.

    Article  CAS  Google Scholar 

  57. Wang Q et al. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One. 2012;7(9):e44398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Chen X et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  59. Toiyama Y et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105(12):849–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Ogata-Kawata H et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014;9(4):e92921.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Wang J et al. Identification of a circulating microRNA signature for colorectal cancer detection. PLoS One. 2014;9(4):e87451.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Stroun M et al. Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol. 1987;23(6):707–12.

    Article  CAS  PubMed  Google Scholar 

  63. Jahr S et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.

    CAS  PubMed  Google Scholar 

  64. Danese E et al. Real-time polymerase chain reaction quantification of free DNA in serum of patients with polyps and colorectal cancers. Clin Chem Lab Med. 2010;48(11):1665–8.

    Article  CAS  PubMed  Google Scholar 

  65. Frigola J et al. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet. 2006;38(5):540–9.

    Article  CAS  PubMed  Google Scholar 

  66. Lee BB et al. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res. 2009;15(19):6185–91.

    Article  CAS  PubMed  Google Scholar 

  67. Lofton-Day C et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54(2):414–23.

    Article  CAS  PubMed  Google Scholar 

  68. Melnikov AA et al. Methylation profile of circulating plasma DNA in patients with pancreatic cancer. J Surg Oncol. 2009;99(2):119–22.

    Article  PubMed  Google Scholar 

  69. Van der Auwera I et al. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer. 2009;100(8):1277–86.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer. 2004;4(9):707–17.

    Article  CAS  PubMed  Google Scholar 

  71. Esteller M. Cancer epigenetics for the 21st century: what’s next? Genes Cancer. 2011;2(6):604–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. deVos T et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem. 2009;55(7):1337–46.

    Article  CAS  PubMed  Google Scholar 

  73. Guzzetta AA et al. The promise of methylation on beads for cancer detection and treatment. Expert Rev Mol Diagn. 2014;14(7):845–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Mitchell SM, et al. A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer. 2014; In Press.

  75. Phalguni A et al. Tests detecting biomarkers for screening of colorectal cancer: what is on the horizon? GMS Health Technol Assess. 2015;11:Doc01.

    PubMed Central  PubMed  Google Scholar 

  76. Fox A, Tietze PH, Ramakrishnan K. Anorectal conditions: hemorrhoids. FP Essent. 2014;419:11–9.

    PubMed  Google Scholar 

  77. Symonds E et al. A methylated DNA blood test for colorectal cancer screening returns a lower false positivity rate than a faecal immunochemical test in people with benign bleeding conditions. J Gastroenterol Hepatol. 2014;29 Suppl 2:S130.

    Google Scholar 

  78. Thomson DM et al. The radioimmunoassay of circulating carcinoembryonic antigen of the human digestive system. Proc Natl Acad Sci U S A. 1969;64(1):161–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Bresalier RS, Kopetz S, Brenner DE. Blood-based tests for colorectal cancer screening: do they threaten the survival of the FIT test? Dig Dis Sci. 2015;60(3):664–71.

    Article  PubMed  Google Scholar 

  80. Kim HJ et al. Identification of S100A8 and S100A9 as serological markers for colorectal cancer. J Proteome Res. 2009;8(3):1368–79.

    Article  CAS  PubMed  Google Scholar 

  81. Nishiumi S et al. A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS One. 2012;7(7):e40459.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Cordero OJ et al. Preoperative serum CD26 levels: diagnostic efficiency and predictive value for colorectal cancer. Br J Cancer. 2000;83(9):1139–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Ayude D et al. Value of the serum alpha-L-fucosidase activity in the diagnosis of colorectal cancer. Oncology. 2000;59(4):310–6.

    Article  CAS  PubMed  Google Scholar 

  84. Lee JH et al. Low-mass-ion discriminant equation: a new concept for colorectal cancer screening. Int J Cancer. 2014;134(8):1844–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Zheng GX et al. Establishment of serum protein pattern for screening colorectal cancer using SELDI-TOF-MS. Exp Oncol. 2006;28(4):282–7.

    CAS  PubMed  Google Scholar 

  86. Bennett KL et al. Frequently methylated tumor suppressor genes in head and neck squamous cell carcinoma. Cancer Res. 2008;68(12):4494–9.

    Article  CAS  PubMed  Google Scholar 

  87. Gilad R et al. High SEPT9_i1 protein expression is associated with high-grade prostate cancers. PLoS One. 2015;10(4):e0124251.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Lee HS et al. Circulating methylated septin 9 nucleic acid in the plasma of patients with gastrointestinal cancer in the stomach and colon. Transl Oncol. 2013;6(3):290–6.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Powrozek T et al. Septin 9 promoter region methylation in free circulating DNA-potential role in noninvasive diagnosis of lung cancer: preliminary report. Med Oncol. 2014;31(4):917.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Ahlquist DA. Multi-target stool DNA test: a new high bar for noninvasive screening. Dig Dis Sci. 2015;60(3):623–33.

    Article  CAS  PubMed  Google Scholar 

  91. Levin B et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin. 2008;58(3):130–60.

    Article  PubMed  Google Scholar 

  92. Haug U et al. Development of new non-invasive tests for colorectal cancer screening: the relevance of information on adenoma detection. Int J Cancer. 2015;136(12):2864–74.

    Article  CAS  PubMed  Google Scholar 

  93. Howlader N, et al. SEER cancer statistics review, 1975-2012. In: N.C. Institute, editor. Bethesda; 2013.

  94. Kuntz KM et al. A systematic comparison of microsimulation models of colorectal cancer: the role of assumptions about adenoma progression. Med Decis Mak. 2011;31(4):530–9.

    Article  Google Scholar 

  95. Subramanian S et al. Adherence with colorectal cancer screening guidelines: a review. Prev Med. 2004;38(5):536–50.

    Article  PubMed  Google Scholar 

  96. Cole SR et al. Predictors of re-participation in faecal occult blood test- based screening for colorectal cancer. Asian Pac J Cancer Prev. 2012;13(12):5989–94.

    Article  PubMed  Google Scholar 

  97. McClean HL, Taylor AJ, Mortimer AM. Fear of venepuncture as a barrier to testing for blood-borne infection and use of an oral fluid test as an alternative to venepuncture in a genitourinary medicine clinic. Sex Transm Infect. 2007;83(1):66–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Pfeffer N, Laws S. ‘It’s only a blood test’: what people know and think about venepuncture and blood. Soc Sci Med. 2006;62(12):3011–23.

    Article  PubMed  Google Scholar 

  99. Ahmed FE et al. Diagnostic microRNA markers to screen for sporadic human colon cancer in blood. Cancer Genomics Proteomics. 2012;9(4):179–92.

    CAS  PubMed  Google Scholar 

  100. Ladabaum U et al. Colorectal cancer screening with blood-based biomarkers: cost-effectiveness of methylated septin 9 DNA versus current strategies. Cancer Epidemiol Biomarkers Prev. 2013;22(9):1567–76.

    Article  PubMed  Google Scholar 

  101. O’Halloran J, et al. Older patients attending general practice in Australia 2000–02. In: A.I.o.H.a. Welfare, editor. Canberra: Australian Institute of Health and Welfare Canberra; 2003.

  102. Cole SR et al. Participation in screening for colorectal cancer based on a faecal occult blood test is improved by endorsement by the primary care practitioner. J Med Screen. 2002;9(4):147–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Erin L. Symonds has received an institutional in-kind donation from Eiken Chemical Company and has received research funding through a grant from Clinical Genomics. Graeme P. Young has received research funding through grants from the National Health and Medical Research Council of Australia to fund studies evaluating methylated DNA biomarkers and from Eiken Chemical Company to his employing university for research into FIT, has received compensation from Clinical Genomics for service as a consultant, and is an inventor on an issued patent for BCAT1 and IKZF1 markers.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin L. Symonds.

Additional information

This article is part of the Topical Collection on Prevention and Early Detection

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Symonds, E.L., Young, G.P. Blood Tests for Colorectal Cancer Screening in the Standard Risk Population. Curr Colorectal Cancer Rep 11, 397–407 (2015). https://doi.org/10.1007/s11888-015-0293-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-015-0293-2

Keywords

Navigation