Log in

The Cardiovascular Effects of Electronic Cigarettes

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Electronic cigarettes (e-cigarettes) are gaining rapid popularity among all age groups, especially among youth. They have evolved into technologically advanced devices capable of delivering nicotine concentration and other substances. In addition to nicotine, e-cigarettes’ constituents possess variety of toxic chemicals that have adverse effects on human body.

Recent Findings

In recent years, steady downward trend in tobacco usage has been observed; however, e-cigarette use is on upward trend. E-cigarettes are advertised as “safer” alternatives to conventional smoking and as an aid to smoking cessation. Emerging studies have, however, shown that e-cigarettes have harmful effects on the cardiovascular system and that most of the e-cigarette users are dual users, concurrently using e-cigarettes and smoking conventional cigarettes.

Summary

Despite a gap in clinical studies and randomized trials analyzing adverse cardiovascular effects of e-cigarette use, the existing literature supports that different constituents of e-cigarettes such as nicotine, carbonyls, and particulate matters carry potential risk for cardiovascular diseases (CVD) on its users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Smoking is down, but almost 38 million American adults still smoke | CDC Online Newsroom | CDC. [Online]. Available: https://www.cdc.gov/media/releases/2018/p0118-smoking-rates-declining.html. [Accessed: 14-Oct-2020].

  2. The Changing Public Image of Smoking in the United States: 1964–2014. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894634/. [Accessed: 16-Oct-2020].

  3. U.S. Department of Health and Human Services, Centers for Disease Control, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking, E-cigarette use among youth and young adults: a report of the surgeon general—executive summary.

  4. Pratiti R, Mukherjee D. Epidemiology and adverse consequences of hookah/waterpipe use: a systematic review. Cardiovasc Hematol Agents Med Chem. 2019;17(2):82–93. https://doi.org/10.2174/1871525717666190904151856.

    Article  CAS  PubMed  Google Scholar 

  5. Perrine CG, et al. Characteristics of a multistate outbreak of lung injury associated with e-cigarette use, or va** — United States, 2019. MMWR Morb Mortal Wkly Rep. 2019;68(39):860–4. https://doi.org/10.15585/mmwr.mm6839e1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Products - Data Briefs - Number 365 - April 2020. [Online]. Available: https://www.cdc.gov/nchs/products/databriefs/db365.htm. [Accessed: 14-Oct-2020].

  7. •• Qasim H, Karim ZA, Rivera JO, Khasawneh FT, Alshbool FZ. Impact of electronic cigarettes on the cardiovascular system. https://doi.org/10.1161/JAHA.117.006353. This study discusses in detail the various chemical constituents of e-cigarettes and their potential cardiovascular effects.

  8. About Electronic Cigarettes (E-Cigarettes) | Smoking & Tobacco Use | CDC. [Online]. Available: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/about-e-cigarettes.html#who-is-using-e-cigarettes. [Accessed: 14-Oct-2020].

  9. Benowitz NL, Fraiman JB. Cardiovascular effects of electronic cigarettes HHS public access. Nat Rev Cardiol. 2017;14(8):447–56. https://doi.org/10.1038/nrcardio.2017.36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Kennedy CD, van Schalkwyk MCI, McKee M, Pisinger C. The cardiovascular effects of electronic cigarettes: a systematic review of experimental studies. Prev Med Academic Press Inc. 127, 2019:105770. https://doi.org/10.1016/j.ypmed.2019.105770. This paper systematically reviewed experimental studies of in vitro, animal, and human cardiovascular effects associated with e-cigarettes use.

  11. • Middlekauff HR. Cardiovascular impact of electronic-cigarette use. Trends Cardiovasc Med Elsevier Inc. 2020;30(3):133–40. https://doi.org/10.1016/j.tcm.2019.04.006. This article discusses various cardiovascular effects on e-cigarettes user and clinical implications.

    Article  CAS  Google Scholar 

  12. Buchanan ND, Grimmer JA, Tanwar V, Schwieterman N, Mohler PJ, Wold LE. Cardiovascular risk of electronic cigarettes: a review of preclinical and clinical studies. Cardiovasc Res. 2020;116(1) Oxford University Press:40–50. https://doi.org/10.1093/cvr/cvz256.

    Article  CAS  PubMed  Google Scholar 

  13. Moheimani RS, Bhetraratana M, Yin F, Peters KM, Gornbein J, Araujo JA, et al. Increased cardiac sympathetic activity and oxidative stress in habitual electronic cigarette users: implications for cardiovascular risk. JAMA Cardiol. 2017;2(3):278–85. https://doi.org/10.1001/jamacardio.2016.5303.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nocella C, Biondi-Zoccai G, Sciarretta S, Peruzzi M, Pagano F, Loffredo L, et al. Impact of tobacco versus electronic cigarette smoking on platelet function. Am J Cardiol. 2018;122(9):1477–81. https://doi.org/10.1016/j.amjcard.2018.07.029.

    Article  CAS  PubMed  Google Scholar 

  15. Platelet Aggregation - an overview | ScienceDirect Topics. [Online]. Available: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/platelet-aggregation. [Accessed: 25-Oct-2020].

  16. Levine PH. An acute effect of cigarette smoking on platelet function a possible link between smoking and arterial thrombosis.

  17. Hom S, Chen L, Wang T, Ghebrehiwet B, Yin W, Rubenstein DA. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations. Platelets. 2016;27(7):694–702. https://doi.org/10.3109/09537104.2016.1158403.

    Article  CAS  PubMed  Google Scholar 

  18. E-cigarettes clobber platelets as much as cigarettes | Center for Tobacco Control Research and Education. [Online]. Available: https://tobacco.ucsf.edu/e-cigarettes-clobber-platelets-much-cigarettes. [Accessed: 25-Oct-2020].

  19. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxidative Med Cell Longev. 2017;2017. Hindawi Limited. https://doi.org/10.1155/2017/8416763.

  20. Isik B, Ceylan A, Isik R. Oxidative stress in smokers and non-smokers. Inhal Toxicol. 2007;19(9):767–9. https://doi.org/10.1080/08958370701401418.

    Article  CAS  PubMed  Google Scholar 

  21. Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and Oxidative Stress. J Clin Med. 2017;6(2):22. https://doi.org/10.3390/jcm6020022.

    Article  CAS  PubMed Central  Google Scholar 

  22. Nicotine and Oxidative Stress. [Online]. Available: https://www.news-medical.net/health/Nicotine-and-Oxidative-Stress.aspx. [Accessed: 25-Oct-2020].

  23. Chatterjee S, Tao JQ, Johncola A, Guo W, Caporale A, Langham MC, et al. Acute exposure to e-cigarettes causes inflammation and pulmonary endothelial oxidative stress in nonsmoking, healthy young subjects. Am J Phys Lung Cell Mol Phys. 2019;317(2):L155–66. https://doi.org/10.1152/ajplung.00110.2019.

    Article  CAS  Google Scholar 

  24. Ceriello A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care. 2008;31(Suppl 2) Diabetes Care. https://doi.org/10.2337/dc08-s245.

  25. Bahorun T, Soobrattee M, Luximon-Ramma V, Aruoma O. Free Radicals and Antioxidants in Cardiovascular Health and Disease.

  26. Goniewicz ML, Gupta R, Lee YH, Reinhardt S, Kim S, Kim B, et al. Nicotine levels in electronic cigarette refill solutions: a comparative analysis of products from the US, Korea, and Poland. Int J Drug Policy. 2015;26(6):583–8. https://doi.org/10.1016/j.drugpo.2015.01.020.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goniewicz ML, Boykan R, Messina CR, Eliscu A, Tolentino J. High exposure to nicotine among adolescents who use Juul and other vape pod systems (pods’). Tob Control. 2019;28(6) BMJ Publishing Group:676–7. https://doi.org/10.1136/tobaccocontrol-2018-054565.

    Article  PubMed  Google Scholar 

  28. Public Health Consequences of E-Cigarettes - NCBI Bookshelf. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK507171/. [Accessed: 24-Oct-2020].

  29. U.S. Department of Health and Human Services. How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease. Centers for Disease Control and Prevention (US), 2010.

  30. Villarreal FJ, Hong D, Omens J. Nicotine-modified postinfarction left ventricular remodeling. Am J Physiol Heart Circ Physiol. 1999;276(3):45–3. https://doi.org/10.1152/ajpheart.1999.276.3.h1103.

    Article  Google Scholar 

  31. Helen GS, Havel C, Dempsey DA, Jacob P, Benowitz NL. Nicotine delivery, retention and pharmacokinetics from various electronic cigarettes. Addiction. 2016;111(3):535–44. https://doi.org/10.1111/add.13183.

    Article  Google Scholar 

  32. Yan XS, D’Ruiz C. Effects of using electronic cigarettes on nicotine delivery and cardiovascular function in comparison with regular cigarettes. Regul Toxicol Pharmacol. 2015;71(1):24–34. https://doi.org/10.1016/j.yrtph.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  33. D’Alessandro A, Boeckelmann I, Hammwhöner M, Goette A. Nicotine, cigarette smoking and cardiac arrhythmia: an overview. Eur J Prev Cardiol. 2012;19(3) SAGE PublicationsSage UK: London, England:297–305. https://doi.org/10.1177/1741826711411738.

    Article  PubMed  Google Scholar 

  34. Jensen K, Nizamutdinov D, Guerrier M, Afroze S, Dostal D, Glaser S. General mechanisms of nicotine-induced fibrogenesis. FASEB J. 2012;26(12) The Federation of American Societies for Experimental Biology:4778–87. https://doi.org/10.1096/fj.12-206458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Czogala J, Goniewicz ML, Fidelus B, Zielinska-Danch W, Travers MJ, Sobczak A. Secondhand exposure to vapors from electronic cigarettes. Nicotine Tob Res. 2014;16(6):655–62. https://doi.org/10.1093/ntr/ntt203.

    Article  CAS  PubMed  Google Scholar 

  36. Flouris AD, Chorti MS, Poulianiti KP, Jamurtas AZ, Kostikas K, Tzatzarakis MN, et al. Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. Inhal Toxicol. 2013;25(2):91–101. https://doi.org/10.3109/08958378.2012.758197.

    Article  CAS  PubMed  Google Scholar 

  37. Ballbè M, Martínez-Sánchez JM, Sureda X, Fu M, Pérez-Ortuño R, Pascual JA, et al. Cigarettes vs. e-cigarettes: passive exposure at home measured by means of airborne marker and biomarkers. Environ Res. 2014;135:76–80. https://doi.org/10.1016/j.envres.2014.09.005.

    Article  CAS  PubMed  Google Scholar 

  38. Goniewicz ML, Lee L. Electronic cigarettes are a source of thirdhand exposure to nicotine. Nicotine Tob Res. 2015;17(2):256–8. https://doi.org/10.1093/ntr/ntu152.

    Article  CAS  PubMed  Google Scholar 

  39. Bush D, Goniewicz ML. A pilot study on nicotine residues in houses of electronic cigarette users, tobacco smokers, and non-users of nicotine-containing products. Int J Drug Policy. 2015;26(6):609–11. https://doi.org/10.1016/j.drugpo.2015.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ogunwale MA, Li M, Ramakrishnam Raju MV, Chen Y, Nantz MH, Conklin DJ, et al. Aldehyde detection in electronic cigarette aerosols. ACS Omega. 2017;2(3):1207–14. https://doi.org/10.1021/acsomega.6b00489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang P, et al. A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLoS One. 2017;12(1):e0169811. https://doi.org/10.1371/journal.pone.0169811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khlystov A, Samburova V. Flavoring compounds dominate toxic aldehyde production during E-cigarette va**. Environ Sci Technol. 2016;50(23):13080–5. https://doi.org/10.1021/acs.est.6b05145.

    Article  CAS  PubMed  Google Scholar 

  43. Kosmider L, Sobczak A, Fik M, Knysak J, Zaciera M, Kurek J, et al. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob Res. 2014;16(10):1319–26. https://doi.org/10.1093/ntr/ntu078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bekki K, Uchiyama S, Ohta K, Inaba Y, Nakagome H, Kunugita N. Carbonyl compounds generated from electronic cigarettes. Int J Environ Res Public Health. 2014;11(11) MDPI AG:11192–200. https://doi.org/10.3390/ijerph111111192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol - NCBI Bookshelf. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK326468/. [Accessed: 24-Oct-2020].

  46. Takeshita D, Nakajima-Takenaka C, Shimizu J, Hattori H, Nakashima T, Kikuta A, et al. Effects of formaldehyde on cardiovascular system in in situ rat hearts. Basic Clin Pharmacol Toxicol. 2009;105(4):271–80. https://doi.org/10.1111/j.1742-7843.2009.00442.x.

    Article  CAS  PubMed  Google Scholar 

  47. Güleç M, Songur A, Sahin S, Ozen OA, Sarsilmaz M, Akyol O. Antioxidant enzyme activities and lipid peroxidation products in heart tissue of subacute and subchronic formaldehyde-exposed rats: a preliminary study. Toxicol Ind Health. 2006;22(3):117–24. https://doi.org/10.1191/0748233706th248oa.

    Article  PubMed  Google Scholar 

  48. Zhang Y, et al. Bone marrow injury induced via oxidative stress in mice by inhalation exposure to formaldehyde. PLoS One. 2013;8(9):e74974. https://doi.org/10.1371/journal.pone.0074974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. ** YZ, Wang GF, Wang Q, Zhang XY, Yan B, Hu WN. Effects of acetaldehyde and L-carnitine on morphology and enzyme activity of myocardial mitochondria in rats. Mol Biol Rep. 2014;41(12):7923–8. https://doi.org/10.1007/s11033-014-3686-4.

    Article  CAS  PubMed  Google Scholar 

  50. Shao B, Fu X, McDonald TO, Green PS, Uchida K, O'Brien KD, et al. Acrolein impairs ATP binding cassette transporter A1-dependent cholesterol export from cells through site-specific modification of apolipoprotein A-I. J Biol Chem. 2005;280(43):36386–96. https://doi.org/10.1074/jbc.M508169200.

    Article  CAS  PubMed  Google Scholar 

  51. Szadkowski A, Myers CR. Acrolein oxidizes the cytosolic and mitochondrial thioredoxins in human endothelial cells. Toxicology. 2008;243(1–2):164–76. https://doi.org/10.1016/j.tox.2007.10.004.

    Article  CAS  PubMed  Google Scholar 

  52. Sithu SD, Srivastava S, Siddiqui MA, Vladykovskaya E, Riggs DW, Conklin DJ, et al. Exposure to acrolein by inhalation causes platelet activation. Toxicol Appl Pharmacol. 2010;248(2):100–10. https://doi.org/10.1016/j.taap.2010.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perez CM, Hazari MS, Ledbetter AD, Haykal-Coates N, Carll AP, Cascio WE, et al. Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhal Toxicol. 2015;27(1):54–63. https://doi.org/10.3109/08958378.2014.984881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fuoco FC, Buonanno G, Stabile L, Vigo P. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ Pollut. 2014;184:523–9. https://doi.org/10.1016/j.envpol.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  55. Fernández E, Ballbè M, Sureda X, Fu M, Saltó E, Martínez-Sánchez JM. Particulate matter from electronic cigarettes and conventional cigarettes: a systematic review and observational study. Curr Environ Health Rep. 2015;2(4) Springer:423–9. https://doi.org/10.1007/s40572-015-0072-x.

    Article  CAS  PubMed  Google Scholar 

  56. Sosnowski TR, Odziomek M. Particle size dynamics: toward a better understanding of electronic cigarette aerosol interactions with the respiratory system. Front Physiol. 2018;9(JUL) Frontiers Media S.A:853. https://doi.org/10.3389/fphys.2018.00853.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nelin TD, Joseph AM, Gorr MW, Wold LE. Direct and indirect effects of particulate matter on the cardiovascular system. Toxicol Lett. 2012 NIH Public Access;208(3):293–9. https://doi.org/10.1016/j.toxlet.2011.11.008.

    Article  CAS  PubMed  Google Scholar 

  58. Dai J, Chen W, Lin Y, Wang S, Guo X, Zhang QQ. Exposure to concentrated ambient fine particulate matter induces vascular endothelial dysfunction via miR-21. Int J Biol Sci. 2017;13(7):868–77. https://doi.org/10.7150/ijbs.19868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mills NL, Törnqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation. 2005;112(25):3930–6. https://doi.org/10.1161/CIRCULATIONAHA.105.588962.

    Article  CAS  PubMed  Google Scholar 

  60. Tanwar V, Katapadi A, Adelstein JM, Grimmer JA, Wold LE. Cardiac pathophysiology in response to environmental stress: a current review. Curr Opin Physiol. 2018;1:198–205. https://doi.org/10.1016/j.cophys.2017.11.005.

    Article  PubMed  Google Scholar 

  61. Williams M, Villarreal A, Bozhilov K, Lin S, Talbot P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS One. 2013;8(3):e57987. https://doi.org/10.1371/journal.pone.0057987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schober W, Szendrei K, Matzen W, Osiander-Fuchs H, Heitmann D, Schettgen T, et al. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. Int J Hyg Environ Health. 2014;217(6):628–37. https://doi.org/10.1016/j.ijheh.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  63. Farsalinos KE, Voudris V, Poulas K. Are metals emitted from electronic cigarettes a reason for health concern? A risk-assessment analysis of currently available literature. Int J Environ Res Public Health. 2015;12(5):5215–32. https://doi.org/10.3390/ijerph120505215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bernhard D, Csordas A, Henderson B, Rossmann A, Kind M, Wick G. Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules. FASEB J. 2005;19(9):1096–107. https://doi.org/10.1096/fj.04-3192com.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu SH, et al. Four hundred and sixty brands of e-cigarettes and counting: implications for product regulation. Tob Control. 2014;23(suppl 3):iii3–9. https://doi.org/10.1136/tobaccocontrol-2014-051670.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sears CG, Hart JL, Walker KL, Robertson RM. Generally recognized as safe: uncertainty surrounding E-Cigarette flavoring safety. Int J Environ Res Public Health. 2017;14(10). https://doi.org/10.3390/ijerph14101274.

  67. Muthumalage T, Prinz M, Ansah KO, Gerloff J, Sundar IK, Rahman I. Inflammatory and oxidative responses induced by exposure to commonly used e-cigarette flavoring chemicals and flavored e-liquids without nicotine. Front Physiol. 2018;8(JAN):1130. https://doi.org/10.3389/fphys.2017.01130.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fetterman JL, Weisbrod RM, Feng B, Bastin R, Tuttle ST, Holbrook M, et al. Flavorings in tobacco products induce endothelial cell dysfunction. Arterioscler Thromb Vasc Biol. 2018;38(7):1607–15. https://doi.org/10.1161/ATVBAHA.118.311156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leigh NJ, Lawton RI, Hershberger PA, Goniewicz ML. Flavourings significantly affect inhalation toxicity of aerosol generated from electronic nicotine delivery systems (ENDS). Tob Control. 2016;25(Suppl 2):ii81–7. https://doi.org/10.1136/tobaccocontrol-2016-053205.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gerloff J, Sundar IK, Freter R, Sekera ER, Friedman AE, Robinson R, et al. Inflammatory response and barrier dysfunction by different e-cigarette flavoring chemicals identified by gas chromatography–mass spectrometry in e-liquids and e-vapors on human lung epithelial cells and fibroblasts. Appl Vitr Toxicol. 2017;3(1):28–40. https://doi.org/10.1089/aivt.2016.0030.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timir K. Paul.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest regarding the content herein.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Ischemic Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadka, S., Awasthi, M., Lamichhane, R.R. et al. The Cardiovascular Effects of Electronic Cigarettes. Curr Cardiol Rep 23, 40 (2021). https://doi.org/10.1007/s11886-021-01469-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01469-4

Keywords

Navigation