Log in

A Quasi-isometric embedding into the group of Hamiltonian diffeomorphisms with Hofer’s metric

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We construct an embedding Φ of [0, 1] into Ham(M, ω), the group of Hamiltonian diffeomorphisms of a suitable closed symplectic manifold (M, ω). We then prove that Φ is in fact a quasi-isometry. After imposing further assumptions on (M, ω), we adapt our methods to construct a similar embedding of ℝ ⊕ [0, 1] into either Ham(M, ω) or

, the universal cover of Ham(M, ω). Along the way, we prove results related to the filtered Floer chain complexes of radially symmetric Hamiltonians. Our proofs rely heavily on a continuity result for barcodes (as presented in [28]) associated to filtered Floer homology viewed as a persistence module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Alvarez-Gavela, V. Kaminker, A. Kislev, K. Kliakhandler, A. Pavlichenko, L. Rigolli, D. Rosen, O. Shabtai, B. Stevenson and J. Zhang, Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms, Journal of Topology and Analysis, to appear, ar**v:1602.05842.

  2. K. Cieliebak, A. Floer, H. Hofer and K. Wysocki, Applications of symplectic homology II: Stability of the action spectrum, Mathematische Zeitschrift 223 (1996), 27᾿5.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence modules, Journal of Algebra and its Applications 14 (2015), 1550066.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, International Mathematics Research Notices 30 (2003), 1635᾿676.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Entov and L. Polterovich, Symplectic quasi-states and semi-simplicity of quantum homology, in Toric Topology, Contemporary Mathematics, Vol. 460, American Mathematical Society, Providence, RI, 2008, pp. 47᾿0.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Compositio Mathematica 145 (2009), 773᾿26.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Entov, L. Polterovich and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure and Applied Mathematics Quarterly 3 (2007), 1037᾿055.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Floer, Symplectic fixed points and holomorphic spheres, Communications in Mathematical Physics 120 (1989), 575᾿11.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Hofer and D. Salamon, Floer homology and Novikov rings, in The Floer Memorial Volume, Progress in Mathematics, Vol. 133, Birkhäuser, Basel, 1995, pp. 483᾿24.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Humilière, F. Le Roux and S. Seyfaddini, Towards a dynamical interpretation of Hamiltonian spectral invariants on surfaces, Geometry & Topology 20 (2016), 2253᾿334.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Lalonde and D. McDuff, Hofer’s L↿geometry: energy and stability of flows II, Inventiones Mathematicae 122 (1995), 1᾿9.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. McDuff, Monodromy in Hamiltonian Floer theory, Commentarii Mathematici Helvetici 85 (2010), 95᾿33.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, Vol. 52, American Mathematical Society, Providence, RI, 2012.

  14. A. Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic Geometry and Floer Homology. A Survey of the Floer Homology for Manifolds with Contact Type Boundary or Symplectic Homology, Ensaios Matemáticos, Vol. 7, Sociedade Brasileira Matemática, Rio de Janeiro, 2004, pp. 51᾿1.

    MathSciNet  MATH  Google Scholar 

  15. Y. Ostrover, A comparison of Hofer’s metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Communications in Contemporary Mathematics 5 (2003), 803᾿11.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of J-holomorphic curves, Geometry & Topology 20 (2016), 779᾿034.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Polterovich, Hofer’s diameter and Lagrangian intersections, International Mathematics Research Notices 4 (1998), 217᾿23.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001.

    Google Scholar 

  19. L. Polterovich and E. Shelukhin, Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta Mathematica 22 (2016), 227᾿96.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Py, Quelques plat pour la métrique de Hofer, Journal für die Reine und Angewandte Mathematik 620 (2008), 185᾿93.

    MathSciNet  MATH  Google Scholar 

  21. D. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology (Park City, UT, 1997), ISA/Park City Mathematics Series, Vol. 7, American Mathematical Society, Providence, RI, 1999, pp. 143᾿29.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Communications in Pure and Applied Mathematics 45 (1992), 1303᾿360.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific Journal of Mathematics 193 (2000), 419᾿61.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Seyfaddini, Spectral killers and Poisson bracket invariants, Journal of Modern Dynamics 9 (2015), 51᾿6.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Usher, Boundary depth in Hamiltonian Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel Journal of Mathematics 184 (2011), 1᾿7.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Usher, Deformed Hamiltonian Floer theory, capacity estimates, and Calabi quasimorphisms, Geometry & Topology 15 (2011), 1313᾿417.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Usher, Hofer’s metrics and boundary depth, Annales Scientifiques de l’École Normale Supérieure 46 (2013), 57᾿28.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Usher and J. Zhang, Persistent homology and Floer–Novikov theory, Geometry & Topology 20 (2016), 3333᾿430.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete & Computational Geometry 33 (2005), 249᾿74.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bret Stevenson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevenson, B. A Quasi-isometric embedding into the group of Hamiltonian diffeomorphisms with Hofer’s metric. Isr. J. Math. 223, 141–195 (2018). https://doi.org/10.1007/s11856-017-1612-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1612-x

Navigation