Log in

The number of Hamiltonian decompositions of regular graphs

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A Hamilton cycle in a graph Γ is a cycle passing through every vertex of Γ. A Hamiltonian decomposition of Γ is a partition of its edge set into disjoint Hamilton cycles. One of the oldest results in graph theory is Walecki’s theorem from the 19th century, showing that a complete graph K n on an odd number of vertices n has a Hamiltonian decomposition. This result was recently greatly extended by Kühn and Osthus. They proved that every r-regular n-vertex graph Γ with even degree r = cn for some fixed c > 1/2 has a Hamiltonian decomposition, provided n = n(c) is sufficiently large. In this paper we address the natural question of estimating H(Γ), the number of such decompositions of Γ. Our main result is that H(Γ) = r (1+o(1))nr/2. In particular, the number of Hamiltonian decompositions of K n is \({n^{\left( {1 + o\left( 1 \right)} \right){n^2}/2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon, The maximum number of Hamiltonian paths in tournaments, Combinatorica 10 (1990), 319–324.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Alspach, The wonderful Walecki construction, Bulletin of the Institute of Combinatorics and its Applications 52 (2008), 7–20.

    MATH  MathSciNet  Google Scholar 

  3. B. Alspach, J. C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, in: Cycles and Rays (Montreal, PQ, 1987), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 301, Kluwer Academic Publishers, Dordrecht, 1990, pp. 9–18.

    Google Scholar 

  4. J. C. Bermond, O. Favaron and M. Maheo, Hamiltonian decomposition of Cayley graphs of degree 4, Journal of Combinatorial Theory. Series B 46 (1989), 142–153.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. M. Brégman, Certain properties of nonnegative matrices and their permanents, Doklady Akademii Nauk SSSR 211 (1973), 27–30.

    MATH  MathSciNet  Google Scholar 

  6. B. Csaba, A. Lo, D. Kühn, D. Osthus and A. Treglown, Proof of the 1-factorization and Hamilton decomposition conjectures, Memoirs of the American Mathematical Society 244 (2016).

    Google Scholar 

  7. B. Cuckler and J. Kahn, Hamilton cycles in Dirac graphs, Combinatorica 29 (2009), 299–326.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Ferber, M. Krivelevich and B. Sudakov, Counting and packing Hamilton cycles in dense graphs and oriented graphs, Journal of Combinatorial Theory. Series B 122 (2017), 196–220.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Fortuna, Z. Skupień and A. Żak, Maximizing hamiltonian pairs and k-sets via numerous leaves in a tree, Discrete Mathematics 309 (2009), 1788–1792.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Frieze, On the number of perfect matchings and Hamilton cycles in ϵ-regular nonbipartite graphs, Electronic Journal of Combinatorics 7 (2000), Research Paper 57.

    Google Scholar 

  11. A. Frieze and M. Krivelevich, On packing Hamilton cycles in ε-regular graphs, Journal of Combinatorial Theory. Series B 94 (2005), 159–172.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Glebov and M. Krivelevich, On the number of Hamilton cycles in sparse random graphs, SIAM Journal on Discrete Mathematics 27 (2013), 27–42.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Janson, The numbers of spanning trees, Hamilton cycles and perfect matchings in a random graph, Combinatorics, Probability and Computing 3 (1994), 97–126.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. H. Kim and N. Wormald, Random matchings which induce Hamilton cycles and Hamiltonian decompositions of random regular graphs, Journal of Combinatorial Theory. Series B 81 (2001), 20–44.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Knox, D. Kühn and D. Osthus, Edge-disjoint Hamilton cycles in random graphs, Random Structures & Algorithms 46 (2015), 397–445.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Krivelevich, On the number of Hamilton cycles in pseudo-random graphs, Electronic Journal of Combinatorics 19 (2012), publication P25.

    Google Scholar 

  17. M. Krivelevich and B. Sudakov, Pseudo-random graphs, in More Sets, Graphs and Numbers, Bolyai Society Mathematical Studies, Vol. 15, Springer, Berlin, 2006, pp. 199–262.

    Chapter  Google Scholar 

  18. D. Kühn and D. Osthus, Hamilton decompositions of regular expanders: a proof of Kelly’s conjecture for large tournaments, Advances in Mathematics 237 (2013), 62–146.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Kühn and D. Osthus, Hamilton decompositions of regular expanders: applications, Journal of Combinatorial Theory. Series B 104 (2014), 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Pósa, Hamiltonian circuits in random graphs, Discrete Mathematics 14 (1976), 359–364.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Ringel, Über drei kombinatorische Probleme am n-dimensionalen Würfel und Würfelgitter, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 20 (1955), 10–19.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Sudakov and V. Vu, Local resilience of graphs, Random Structures & Algorithms 33 (2008), 409–433.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Glebov.

Additional information

Research supported by the ERC grant “High-dimensional combinatorics” at the Hebrew University of Jerusalem.

Research supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Foundation.

Research supported in part by SNSF grant 200021-149111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glebov, R., Luria, Z. & Sudakov, B. The number of Hamiltonian decompositions of regular graphs. Isr. J. Math. 222, 91–108 (2017). https://doi.org/10.1007/s11856-017-1583-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1583-y

Navigation