Log in

Manifolds of quasiconformal map**s and the nonlinear Beltrami equation

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper we show that the homeomorphic solutions to each nonlinear Beltrami equation \(\partial_{\bar{z}}f=\mathcal{H}(z,\partial_{z}f)\) generate a two-dimensional manifold of quasiconformal map**s \(\mathcal{F}_\mathcal{H} \subset {W_{\rm{loc}}^{1,2}(\mathbb{C})}\). Moreover, we show that under regularity assumptions on \(\mathcal{H}\), the manifold \(\mathcal{F}_\mathcal{H}\) defines the structure function \(\mathcal{H}\) uniquely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alessandrini and V. Nesi, Beltrami operators, non-symmetric elliptic equations and quantitative Jacobian bounds, Ann. Acad. Sci. Fenn. Math. 34 (2009), 47–67.

    MathSciNet  MATH  Google Scholar 

  2. K. Astala, A. Clop, D. Faraco, J. Jääskeläinen and A. Koski, Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 1543–1559.

    Article  MathSciNet  Google Scholar 

  3. K. Astala, A. Clop, D. Faraco, J. Jääskeläinen and L. Székelyhidi, Jr., Uniqueness of normalized homeomorphic solutions to nonlinear Beltrami equations, Int. Math. Res. Not. IMRN (2012), 4101–4119.

    Google Scholar 

  4. K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Map**s in the Plane, Princeton University Press, Princeton, NJ, 2009.

    MATH  Google Scholar 

  5. K. Astala, T. Iwaniec, and E. Saksman, Beltrami operators in the plane, Duke Math. J. 107 (2001), 27–56.

    Article  MathSciNet  Google Scholar 

  6. K. Astala and J. Jääskeläinen, Homeomorphic solutions to reduced Beltrami equations, Ann. Acad. Sci. Fenn. Math. 34 (2009), 607–613.

    MathSciNet  MATH  Google Scholar 

  7. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  8. J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin, 1976.

    Book  Google Scholar 

  9. B. Bojarski. Quasiconformal map**s and general structural properties of systems of non linear equations elliptic in the sense of Lavrent’ev, in Symposia Mathematica, Vol. XVIII, (Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, INDAM, Rome, 1974), Academic Press, London, 1976, pp. 485–499.

    Google Scholar 

  10. B. Bojarski, L. D’Onofrio, T. Iwaniec and C. Sbordone, G-closed classes of elliptic operators in the complex plane, Ricerche Mat. 54 (2005), 403–432.

    MathSciNet  MATH  Google Scholar 

  11. B. Bojarski and T. Iwaniec, Quasiconformal map**s and non-linear elliptic equations in two variables. Vols. I, II, Bull. Acad. Polon. Sci. Sér. Sci.Math. Astronom. Phys. 22 (1974), 473–478.

    MathSciNet  MATH  Google Scholar 

  12. F. Giannetti, T. Iwaniec, L. Kovalev, G. Moscariello and C. Sbordone, On G-compactness of the Beltrami operators, in Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, Kluwer Academic, Dordrecht, 2004, pp. 107–138.

    Google Scholar 

  13. T. Iwaniec, Quasiconformal map** problem for general nonlinear systems of partial differential equations, in Symposia Mathematica, Vol. XVIII, (Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, INDAM, Rome, 1974), Academic Press, London, 1976, pp. 501–517.

    Google Scholar 

  14. J. Jääskeläinen, On reduced Beltrami equations and linear families of quasiregular map**s, J. Reine Angew. Math. 682 (2013), 49–64.

    MathSciNet  MATH  Google Scholar 

  15. S. Lang, Fundamentals of Differential Geometry, Springer-Verlag, New York, 1999.

    Book  Google Scholar 

  16. W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York-Auckland-Düsseldorf, 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Faraco.

Additional information

K. A. was supported by Academy of Finland project SA-307333.

A. C. was supported by research grants 2014SGR75 (Generalitat de Catalunya), MTM2016-75390-P and MTM2016-81703-ERC (Gobierno de Espana) and FP7-607647 (European Union).

D. F. was supported by research grant MTM2011-28198 from the Ministerio de Ciencia e Innovación (MCINN), by MINECO: ICMAT Severo Ochoa project SEV-2011-0087, and by the ERC 307179.

J. J. was supported by the ERC 307179 and Academy of Finland (no. 276233).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astala, K., Clop, A., Faraco, D. et al. Manifolds of quasiconformal map**s and the nonlinear Beltrami equation. JAMA 139, 207–238 (2019). https://doi.org/10.1007/s11854-019-0059-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0059-x

Navigation