Log in

Synthesis and Electrochemical Performance of Na and F Elements Co-Doped LiFePO4/C as a Cathode Material for High-Rate Lithium-Ion Batteries and the Mechanism of Modification

  • Interface Engineering and Property Functionalization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

LiFePO4 has become a mainstream cathode material, owing to its good safety and low price. However, its intrinsic limitations in terms of electronic and ionic conductivities hinder its further advancements. To overcome this challenge, element do** has been explored to enhance its conductivity. Here, Na and F co-doped LiFePO4/C was successfully synthesized via a carbothermic method. Structural characterization techniques were employed to confirm the formation of Li0.97Na0.03FePO3.97F0.03 with controllable particle sizes. The incorporation of Na and F ions into the LiFePO4 lattice results in a reduction of the Li-O bond energy. This decrease in bond energy facilitates the extraction and insertion of lithium ions during the charge and discharge processes, subsequently improving the overall kinetics of lithium-ion diffusion. Simultaneously, lattice distortion induced by do** led to charge compensation and accelerated Li+ migration. Benefiting from the enhancement of intrinsic conductivity and Li+ diffusivity, the specific capacitance of the co-doped LiFePO4/C cathode material was found to be 160 and 110 mAh g−1 at 0.1 and 5 C, respectively. Further, density functional theory calculations showed that Na/F co-do** enhanced the structural evolution in the material and increased free carrier concentration in LiFePO4. This work demonstrates that synergistic Na and F co-do** can optimize the rate performance of LiFePO4 by enhancing intrinsic conductivity and Li+ diffusivity, suggesting promising applications of the co-doped LiFePO4/C in high-power lithium-ion batteries for electric vehicles and grid-level energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Wang, D. Peng, Y. Chen, X. **a, H. Liu, Y. He, and Q. Ma, J. Electroanal. Chem. 818, 12569 (2018).

    Google Scholar 

  2. X. Nie and J. **ong, JOM 73, 2525 (2021).

    Article  Google Scholar 

  3. C. Zhong, Z. Chen, Y. Lu, J. Liu, and S. **a, Nonferr. Met. Sci. Eng. 3, 59 (2020).

    Google Scholar 

  4. A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).

    Article  Google Scholar 

  5. S.A. Novikova and A.B. Yaroslavtsev, Russ. Chem. Bull. 66, 1336 (2017).

    Article  Google Scholar 

  6. Z.-H. Liu, R.-L. Zhang, F.-F. Xu, Y. Gao, and J.-S. Zhao, J. Solid State Electrochem. 26, 1655 (2022).

    Article  Google Scholar 

  7. C.-Y. Ouyang, S.-Q. Shi, Z.-X. Wang, H. Li, X.-J. Huang, and L.-Q. Chen, J. Phys. Condens. Matter 16, 2265 (2004).

    Article  Google Scholar 

  8. C.-J. Yang, D.J. Lee, H. Kim, K. Kim, J. Joo, W.B. Kim, Y.B. Song, Y.S. Jung, and J. Park, RSC Adv. 9, 13714 (2019).

    Article  Google Scholar 

  9. L. Zhang, B. Huang, Y. Wang, T. Long, and J. Liu, Jiangxi Metall. 05, 31 (2022).

    Google Scholar 

  10. A.R. Iarchuk, V.A. Nikitina, E.A. Karpushkin, V.G. Sergeyev, E.V. Antipov, K.J. Stevenson, and A.M. Abakumov, ChemElectroChem 26, 5090 (2019).

    Article  Google Scholar 

  11. X.-G. Yin, K.-L. Huang, S.-Q. Liu, H.-Y. Wang, and H. Wang, J. Power. Sour. 195, 4308 (2010).

    Article  Google Scholar 

  12. T.-F. Yi, X.-Y. Li, H.-P. Liu, J. Shu, Y.-R. Zhu, and R.-S. Zhu, Ionics 18, 529 (2012).

    Article  Google Scholar 

  13. Y. Liu, W.-C. Qin, D.-K. Zhang, L.-W. Feng, and L. Wu, Prog. Nat. Sci. Mater. Int. 31, 14 (2021).

    Article  Google Scholar 

  14. B.-Y. Wang, Y. Wang, H. Wu, L. Yao, L. Yang, J.-L. Li, M.-W. **ang, Y. Zhang, and H. Liu, ChemElectroChem 4, 66336 (2017).

    Google Scholar 

  15. L. Yuan, Y.-J. Gu, G.-Y. Luo, Z.-L. Chen, F.-Z. Wu, X.-Y. Dai, Y. Mai, and J.-Q. Li, Ceram. Int. 46, 14857 (2020).

    Article  Google Scholar 

  16. H.-Y. Gao, L.-F. Jiao, J.-Q. Yang, Z. Qi, Y.-J. Wang, and H.-T. Yuan, Electrochim. Acta 97, 143 (2013).

    Article  Google Scholar 

  17. C.-Q. Shen, W. Lin, H.-S. Hu, P. Yang, and L.-B. Wang, J. Alloys Compd. 936, 168035 (2023).

    Article  Google Scholar 

  18. H. Li, Z.-X. Wang, L.-Q. Chen, and X.-J. Huang, Adv. Mater. 21, 4593 (2009).

    Article  Google Scholar 

  19. N.H.M. Zaki, S.I. Ahmad, F.N. Sazman, F.W. Badrudin, A. Abdullah, M. Taib, O.H. Hassan, and M.Z.A. Yahya, Comput. Theor. Chem. 1221, 114029 (2023).

    Article  Google Scholar 

  20. M. Pan, X.-H. Lin, and Z.-T. Zhou, J. Solid State Electrochem. 16, 1615 (2012).

    Article  Google Scholar 

  21. K. Okada, I. Kimura, and K. Machida, RSC Adv. 8, 5848 (2018).

    Article  Google Scholar 

  22. Z.-G. Wang, X.-Y. Niu, J. **ao, C.-M. Wang, J. Liu, and F. Gao, RSC Adv. 3, 16775 (2013).

    Article  Google Scholar 

  23. D. Morgan, A. Van Der Ven, and G. Ceder, Electrochem. Solid-State Lett. 7, A30 (2003).

    Article  Google Scholar 

  24. Y. Gao, K. **ong, H.-D. Zhang, and B.-F. Zhu, ACS Omega 6, 14122 (2021).

    Article  Google Scholar 

  25. M.-D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, Phys. Condens. Matter 14, 2717 (2002).

    Article  Google Scholar 

  26. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  27. H. Yuan, X.-Y. Wang, Q. Wu, H.-B. Shu, and X.-K. Yang, J. Alloys Compd. 675, 187 (2016).

    Article  Google Scholar 

  28. H.-B. Shu, X.-Y. Wang, W.-C. Wen, Q.-Q. Liang, X.-K. Yang, Q.-L. Wei, B.-N. Hu, L. Liu, X. Liu, and Y. Song, Electrochim. Acta 89, 479 (2013).

    Article  Google Scholar 

  29. Z.-H. Wang, L.-X. Yuan, M. Wu, D. Sun, and Y.-H. Huang, Electrochim. Acta 56, 8477 (2011).

    Article  Google Scholar 

  30. H.-Q. Wang, A.-J. Lai, D. Huang, Y.-Q. Chu, S.-J. Hu, Q.-C. Pan, Z.-H. Liu, F.-H. Zheng, Y.-G. Huang, and Q.-Y. Li, New J. Chem. 45, 5695 (2021).

    Article  Google Scholar 

  31. X.-Z. Liao, Y.-S. He, Z.-F. Ma, X.-M. Zhang, and L. Wang, J. Power. Sources 174, 720 (2007).

    Article  Google Scholar 

  32. S. Singh, A.K. Raj, R. Sen, P. Johari, S. Mitra, and A.C.S. Appl, Mater. 9, 26885 (2017).

    Google Scholar 

  33. Y. Wang, Z.-S. Feng, L.-L. Wang, L. Yu, J.-J. Chen, Z. Liang, and R. Wang, RSC Adv. 4, 51609 (2014).

    Article  Google Scholar 

  34. S. Park, O. Jiseop, J.M. Kim, G. Valentina, H. Tae**, J. Youngmoo, S.-A. German, and P. Yuanzhe, Electrochim. Acta 354, 136707 (2020).

    Article  Google Scholar 

  35. K. Bachtin, D. Kramer, V.S.K. Chakravadhanula, X.-K. Mu, V. Trouillet, M. Kaus, S. Indris, H. Ehrenberg, and C. Roth, J. Power. Sources 396, 386 (2018).

    Article  Google Scholar 

  36. N. Dupré, M. Cuisinier, Y. Zheng, V. Fernandez, J. Hamon, M. Hirayama, R. Kanno, and D. Guyomard, J. Power. Sources 382, 45 (2018).

    Article  Google Scholar 

  37. I.D. Johnson, M. Lübke, O.-Y. Wu, N.M. Makwana, G.J. Smales, H.U. Islam, R.Y. Dedigama, R.I. Gruar, C.J. Tighe, and D.O. Scanlon, J. Power. Sources 302, 410 (2016).

    Article  Google Scholar 

  38. S.-Y. Chung, Y.-M. Kim, and S.-Y. Choi, Adv. Funct. Mater. 20, 4219 (2010).

    Article  Google Scholar 

  39. J. Tu, K. Wu, H. Tang, H. Zhou, S. Jiao, and J. Mater, Chem. A 5, 2084 (2017).

    Google Scholar 

  40. C.-F. Li, H. Ning, C.-Y. Wang, X.-Y. Kang, T. Wumair, and Y. Han, J. Alloys Compd. 509, 1897 (2011).

    Article  Google Scholar 

  41. L. Laffont, C. Delacourt, P. Gibot, M.Y. Wu, P. Kooyman, C. Masquelier, and J.M. Tarascon, Chem. Mater. 18, 5520 (2006).

    Article  Google Scholar 

  42. J. Xu and G. Chen, Phys. B 405, 803 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by Science and Technology Program of Jiangxi Province in China (20212BAB204025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Liu, J., Yu, X. et al. Synthesis and Electrochemical Performance of Na and F Elements Co-Doped LiFePO4/C as a Cathode Material for High-Rate Lithium-Ion Batteries and the Mechanism of Modification. JOM (2024). https://doi.org/10.1007/s11837-024-06664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06664-6

Navigation