Log in

Effect of B4C Addition on Microstructure and Wear Resistance of Laser Cladding NiCrBSi Coatings

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In order to solve the problems of low hardness and poor wear resistance of titanium alloy, laser cladding technology was used to prepare NiCrBSi coatings with different amounts of B4C on the surface of Ti-6Al-4V alloy. The effects of B4C content on the microstructure evolution, hardness, fracture toughness, and wear resistance of NiCrBSi coatings were investigated. The results showed that with an increase of B4C addition, the size and number of ceramic phases TiB2, TiC, and CrB in the coating increased, and the ceramic phases were dispersed in the coating. The average microhardness of the coating with 9 wt.% B4C addition was the highest, reaching 1250.3 HV0.2, which is 15% higher than that of the coating without B4C addition. After adding B4C, the fracture toughness of the coating increased. When the addition of B4C was 3 wt.%, the fracture toughness of the coating was the highest, reaching 1.42 MPa m1/2, which is 178.4% higher than that of the coating without B4C. With the increase of the addition of B4C, the wear loss of the coating decreased and the wear resistance increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Sahoo, B.B. Jha, T.K. Sahoo, and D. Sahoo, J. Mater. Eng. Perform. 23, 2092. https://doi.org/10.1007/s11665-014-0987-7 (2014).

    Article  Google Scholar 

  2. H. Dong and T. Bell, Wear 238, 131. https://doi.org/10.1016/S0043-1648(99)00359-2 (2000).

    Article  Google Scholar 

  3. R. Srinivasan, M. Kamaraj, D. Rajeev, S. Ravi, and N. Senthilkumar, Silicon 14, 8629. https://doi.org/10.1007/s12633-022-01657-z (2022).

    Article  Google Scholar 

  4. A. Vadiraj and M. Kamaraj, Mater. Sci. Forum 681, 539. https://doi.org/10.4028/www.scientific.net/MSF.539-543.681 (2007).

    Article  Google Scholar 

  5. Y. Luo, S. Ge, Z. **, and J. Fisher, P I Mech. Eng. J-J Eng. Tribol. 223, 311. https://doi.org/10.1243/13506501JET488 (2009).

    Article  Google Scholar 

  6. S. Mukherjee, S. Dhara, and P. Saha, J. Manuf. Process. 65, 119. https://doi.org/10.1016/j.jmapro.2021.03.023 (2021).

    Article  Google Scholar 

  7. H.X. Zhang, H.J. Yu, and C.Z. Chen, Sci. Eng. Compos. Mater. 24, 541. https://doi.org/10.1515/secm-2015-0032 (2017).

    Article  Google Scholar 

  8. Y. Zhu, X.B. Liu, Y.F. Liu, G. Wang, Y. Wang, Y. Meng, and J. Liang, Surf. Coat. Technol. 424, 127664. https://doi.org/10.1016/j.surfcoat.2021.127664 (2021).

    Article  Google Scholar 

  9. Z.Y. Zhou, X.B. Liu, S.G. Zhuang, X.H. Yang, M. Wang, and C.F. Sun, Appl. Surf. Sci. 481, 209. https://doi.org/10.1016/j.apsusc.2019.03.092 (2019).

    Article  Google Scholar 

  10. W.L. Li, R.F. Di, R.W. Yuan, H.Y. Song, and J.B. Lei, J. Manuf. Process. 74, 413. https://doi.org/10.1016/j.jmapro.2021.12.045 (2022).

    Article  Google Scholar 

  11. Y.L. **a, H.N. Chen, X.D. Liang, and J.B. Lei, J. Manuf. Process. 68, 1694. https://doi.org/10.1016/j.jmapro.2021.06.074 (2021).

    Article  Google Scholar 

  12. N.S. Karthiselva and S.R. Bakshi, Mater. Sci. Eng. A. 663, 38. https://doi.org/10.1016/j.msea.2016.03.098 (2016).

    Article  Google Scholar 

  13. Y.H. Liu, Study on Fabrication and Reinforcement Mechanism of Ni-based Composite Laser Cladding Coating on Ti6Al4V Alloy. East China University of Science and Technology, 2015 (in Chinese).

  14. L.L. Bai, J. Li, J.L. Chen, R. Song, J.Z. Shao, and C.C. Qu, Opt. Laser Technol. 76, 33. https://doi.org/10.1016/j.optlastec.2015.07.010 (2016).

    Article  Google Scholar 

  15. Y. Diao and K. Zhang, Appl. Surf. Sci. 352, 163. https://doi.org/10.1016/j.apsusc.2015.04.030 (2015).

    Article  Google Scholar 

  16. M.G. Krukovich, B.A. Prusakov, and I.G. Sizov, The formation conditions for boride and boronized layers and their influence on the layers’ plasticity. in Plasticity of Boronized Layers, vol 237 (Cham, Springer Series in Materials Science, 2016) pp. 81–110. https://doi.org/10.1007/978-3-319-40012-9_7.

  17. Q.W. Meng, L. Geng, and B.Y. Zhang, Surf. Coat. Technol. 200, 4923. https://doi.org/10.1016/j.surfcoat.2005.04.059 (2006).

    Article  Google Scholar 

  18. X.H. Fan, L. Geng, B. Xu, and J. Li, Adv. Mater. Res. 79, 473. https://doi.org/10.4028/www.scientific.net/AMR.79-82.473 (2009).

    Article  Google Scholar 

  19. Y.L. Liang, H.G. Fu, Z.G. **ng, X.Y. Guo, and J. Lin, J. Mater. Eng. Perform. 31, 5189. https://doi.org/10.1007/s11665-022-06604-y (2022).

    Article  Google Scholar 

  20. M. Masanta, S.M. Shariff, and A.R. Choudhury, Mater. Sci. Eng. A 528, 5327. https://doi.org/10.1016/j.msea.2011.03.057 (2011).

    Article  Google Scholar 

  21. W.G. Li, J. Li, and Y.S. Xu, Coatings 11, 960. https://doi.org/10.3390/coatings11080960 (2021).

    Article  Google Scholar 

  22. C.C. Qu, J. Li, L.L. Bai, J.Z. Shao, R. Song, and J.L. Chen, J. Alloys Compd. 644, 450. https://doi.org/10.1016/j.jallcom.2015.05.081 (2015).

    Article  Google Scholar 

  23. J.M. Drezet, S. Pellerin, C. Bezençon, and S. Mokadem, J. Phys. IV 120, 299. https://doi.org/10.1051/jp4:2004120034 (2004).

    Article  Google Scholar 

  24. J. Li, X.J. Zhang, H.P. Wang, and M.P. Li, Int. J. Min. Met. Mater. 20, 57. https://doi.org/10.1007/s12613-013-0693-8 (2013).

    Article  Google Scholar 

  25. T. Chen, W.P. Li, D.F. Liu, Y. **ong, and X.C. Zhu, Ceram. Int. 47, 755. https://doi.org/10.1016/j.ceramint.2020.08.186 (2020).

    Article  Google Scholar 

  26. E.B. Jacob and P. Garik, Nature 343, 523. (1990).

    Article  Google Scholar 

  27. A. Faye, V. Paramesw, and S. Basu, Mech. Mater. 94, 156. https://doi.org/10.1016/j.mechmat.2015.12.002 (2016).

    Article  Google Scholar 

  28. Q. Chang, D.L. Chen, H.Q. Ru, X.Y. Yue, L. Yu, and C.P. Zhang, Biomaterials 31, 1493. https://doi.org/10.1016/j.biomaterials.2009.11.046 (2010).

    Article  Google Scholar 

  29. J.D. Hogan, L. Farbaniec, T. Sano, M. Shaeffer, and K.T. Ramesh, Acta Mater. 102, 263. https://doi.org/10.1016/j.actamat.2015.09.028 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R&D Program of Bei**g Municipal Education Commission (KZ202210005004) for financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanguang Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Liang, Y. & Fu, H. Effect of B4C Addition on Microstructure and Wear Resistance of Laser Cladding NiCrBSi Coatings. JOM 75, 515–525 (2023). https://doi.org/10.1007/s11837-022-05610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05610-8

Navigation