Log in

Electrochemical Reduction of Silicon Oxide and Codeposition of Al-Si Alloy from Cryolite Molten Salt

  • 2D Materials – Preparation, Properties & Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The preparation of high-purity and high-value alloys is of great significance to industrial production. The purpose of this study is to explore the process of producing aluminum-silicon (Al-Si) alloy by the electrochemical Al-Si eutectoid method. The electrochemical behavior of aluminum and silicon on tungsten electrode was studied by cyclic voltammetry and galvanostatic chronopotentiometry. The effect of SiO2 addition on the eutectoid behavior of Al and Si was studied. The results show that the precipitation potential of Al is about –1.35 V (versus Pt), and the initial precipitation potential of Si is about –0.8 V (versus Pt). The precipitation process of silicon includes two reduction stages. In addition, the precipitation of Si is a quasireversible reaction controlled by diffusion process. Finally, Al-Si alloy was obtained by potentiostatic electrodeposition at –1.8 V potential, indicating that Al and Si would codeposit at this potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Ignatov, and P. Korolev, IOP Conf. Ser.: Earth Environ. Sci. 390, 012052. (2019).

    Google Scholar 

  2. Z. Lin, IOP Conf. Ser.: Earth Environ. Sci. 81, 012113. (2017).

    Google Scholar 

  3. K.H. Solangi, M.R. Islam, R. Saidur, N.A. Rahim, and H. Fayaz, Sustain. Energy Rev. 15, 2149. (2011).

    Article  Google Scholar 

  4. Y. Zhang, and Z. Wang IOP Conf. Ser.: Earth Environ. Sci. 300, 022155. (2019).

    Google Scholar 

  5. R. Joshi, J. Phys.: Conf. Ser. 1714, 012048. (2021).

    Google Scholar 

  6. S. Chandra, and N. Khare, J. Electrochem. Soc. 136, 2856. (1989).

    Article  Google Scholar 

  7. Y. Ma, A. Ido, K. Yasuda, R. Hagiwara, T. Homma, and T. Nohira, J. Electrochem. Soc. 166, D162. (2019).

    Article  Google Scholar 

  8. M. Tao, ECS J. Solid State Sci. Technol. 9, 125007. (2020).

    Article  Google Scholar 

  9. P. Shower, J. Poplawsky, S. Bahl, and A. Shyam, J. Alloys Compd. 862, 158152. (2021).

    Article  Google Scholar 

  10. J.H. Jeon, J.H. Shin, and D.H. Bae, Mater. Sci. Eng. A 748, 367–370. (2019).

    Article  Google Scholar 

  11. A.M. Nithin, M.J. Davidson, and C.S.P. Rao, J. Mater. Eng. Performance 29, 6378. (2020).

    Article  Google Scholar 

  12. C.L. Pereira, L.F. Gomes, A. Garcia, and J.E. Spinelli, J. Alloys Compd. 878, 160343. (2021).

    Article  Google Scholar 

  13. Y. Birol, J. Mater. Sci. 43, 3577. (2008).

    Article  Google Scholar 

  14. B.A. Kapsalyamov, Russ. Metall. 12, 1151. (2010).

    Article  Google Scholar 

  15. T. Tsuda, C.L. Hussey, G.R. Stafford, and O. Kongstein, J. Electrochem. Soc 151, C447. (2004).

    Article  Google Scholar 

  16. T. Tsuda, and C.L. Hussey, J. Min. Metall. B 39(1–2), C3. (2003).

    Article  Google Scholar 

  17. T. Tsuda, C.L. Hussey, G.R. Stafford, and J.E. Bonevich, J. Electrochem. Soc 150, C234. (2003).

    Article  Google Scholar 

  18. W.R. Pitner, C.L. Hussey, and G.R. Stafford, J. Electrochem. Soc 143, 130. (1996).

    Article  Google Scholar 

  19. Y. Tian, B. Sun, and Y. Zhai, Trans. Nonferrous Met. Soc. China 8(4), C626. (1998).

    Google Scholar 

  20. S. Ruan, and C.A. Schuh, Acta Mater. 57(13), C3810. (2009).

    Article  Google Scholar 

  21. T. Tsuda, C.L. Hussey, and G.R. Stafford, J. Electrochem. Soc 151, C379. (2004).

    Article  Google Scholar 

  22. X.-Y. Sun, G.-M. Lu, and S.-D. Fan, Trans. Nonferrous Met. Soc. China 24(05), C1629. (2014).

    Article  Google Scholar 

  23. L. Mei, T.-T. Sun, B. Liu, W. Han, Y. Sun, and M.-L. Zhang, Electrochem. N Energy 31(2), C309. (2015).

    Google Scholar 

  24. M. Ciumag, M. Gibilaro, L. Massot, R. Laucournet, and P. Chamelot, J. Fluor. Chem. 184, C1. (2016).

    Article  Google Scholar 

  25. K. Yasuda, T. Nohira, Y.H. Ogata, and Y. Ito, J. Electrochem. Soc. 152, D208. (2005).

    Article  Google Scholar 

  26. K. Yasuda, T. Nohira, R. Hagiwara, and Y.H. Ogata, J. Electrochem. Soc. 154(7), E95. (2007).

    Article  Google Scholar 

  27. M. Ueda, Y. Abe, and T. Ohtsuka, Mater. Lett. 60(5), C635. (2006).

    Article  Google Scholar 

  28. A.M. Vinogradov, I.P. Vasyunina, Yu.G. Mikhalev, and P.V. Polyakov, Russ. J. Non-ferrous Met 49(5), C346. (2008).

    Article  Google Scholar 

  29. T. Jun and Q. Zhu-xian, J. North China Univ. Technol., 03, C24 (1994) (https://kns.cnki.net/kcms/detail/detail.aspx?FileName=BFGY199403003&DbName=CJFQ1994)

  30. N. **aodong, W. Zhaowen, Y. Xuguang, G: Bingliang, S. Zhongning, and Q. Zhuxian, Light Metals, 06, C29 (2005) (https://kns.cnki.net/kcms/detail/detail.aspx?FileName=QJSS200506008&DbName=CJFQ2005)

  31. D. Höhlich, D. Wachner, M. Müller, I. Scharf, and T. Lampke, IOP Conf. Ser. Mater. Sci. Eng. 373, 012007. (2018).

    Article  Google Scholar 

  32. T. Shaohu, D. Yuezhong, P. Jian**, W. Yaowu, Z. Kun, and F. Naixiang, J. Chem. Eng. 65(02), C633. (2014).

    Google Scholar 

  33. L.D. Rafailović, C. Gammer, C. Rentenberger, T. Trišović, C. Kleber, and H.P. Karnthaler, Adv. Mater. 27(41), C6438. (2015).

    Article  Google Scholar 

  34. A.B. Rogov, A. Matthews, and A. Yerokhin, Electrochim. Acta 317, 221. (2019).

    Article  Google Scholar 

  35. P.R. Kharangarh, G. Vinay, S. Amrita, B. Preetam, and G. Andrews Nirmala, Diamond Relat Mater. 107, 107913. (2020).

    Article  Google Scholar 

  36. P.R. Kharangarh, M.R. Nuggehalli, R. Rawal, A. Singh, and V. Gupta, J. Alloys Compd. 876, 159990. (2021).

    Article  Google Scholar 

  37. P.R. Kharangarh, Emerging Mater. Res. 6(2), C227. (2017).

    Article  Google Scholar 

  38. A.L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Taxil, and P. Chamelot, Electrochim. Acta 62, C282. (2012).

    Article  Google Scholar 

  39. Z. Cai, Y. Li, X. He, and J. Liang, Metall. Mater. Trans. B 41, C1033. (2010).

    Article  Google Scholar 

  40. A. Liu, Z. Shi, X. Hu, B. Kubikova, M. Boca, B. Gao, and Z. Wang, Compd. 718, C279. (2017).

    Article  Google Scholar 

  41. Q.B. Diep, F.W. Dewing, and A. Sterten, Metall. Mater. Trans. B 33(1), C140. (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51874086, 51804071, 51434005, 51529401, 51804069, and 51804070) and the Fundamental Research Funds for the Central Universities (N2025024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenju Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tao, W., Chen, L. et al. Electrochemical Reduction of Silicon Oxide and Codeposition of Al-Si Alloy from Cryolite Molten Salt. JOM 73, 3727–3733 (2021). https://doi.org/10.1007/s11837-021-04849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04849-x

Navigation