Log in

Divorced Eutectoid on Heat-Affected Zone of Welded Pearlitic Rails

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Welds in heavy haul rails are usually associated with accelerated wear and are a common source of defects, justifying a careful study of their characteristics. Heat-affected zones usually present hardness loss, corresponding to a spheroidized cementite region. The literature acknowledges that this is a consequence of the welding heat input but without further explanations. However, in order to control this loss, the mechanisms of microstructural changes need to be fully understood. This paper clarifies the mechanisms for the formation of the spheroidized region in the heat-affected zone of pearlitic welded rails, using as an example a flash butt-welded rail. The weld surroundings had its microstructure characterized and the correspondent hardness measured. Those microstructures were then simulated using a quenching dilatometer for three different rails. The results make it clear that the spheroidized microstructure is a consequence of the divorced eutectoid transformation, which is at a maximum at the end of the eutectoid gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Girsch, J. Keichel, R. Gehrmann, A. Zlatnik, and N. Frank, in IHHA Conference, Shanghai

  2. P. Mutton, J. Cookson, C. Qiu, and D. Welsby, Wear 366, 368 (2016).

    Article  Google Scholar 

  3. K. Saita, K. Karimine, M. Ueda, K. Iwano, T. Yamamoto, and K. Hiroguchi, Nippon Steel Sumitomo Met. Tech. Rep. 105, 84 (2013).

    Google Scholar 

  4. M.J.M.M. Steenbergen and R.W. Van Bezooijen, in Wheel–Rail Interface Handbook (Elsevier, Amsterdam, 2009), p. 377

  5. G. Krauss, Steels: Processing, Structure, and Performance (ASM International, Almere, 2015)

    Google Scholar 

  6. M. Fujii, H. Nakanowatari, and K. Nariai, JFE Tech. Rep. 20, 159 (2015).

    Google Scholar 

  7. P. Payson, W. L. Hodapp, and J. Leeder, Trans. Am. Soc. Met. 28, 306 (1940).

    Google Scholar 

  8. T. Oyama, O. D. Sherby, J. Wadsworth, and B. Walser, Scr. Metall. 18, 799 (1984).

    Article  Google Scholar 

  9. J. D. Verhoeven and E. D. Gibson, Metall. Mater. Trans. A 29, 1181 (1998).

    Article  Google Scholar 

  10. K. Ankit, R. Mukherjee, and B. Nestler, Acta Mater. 97, 316 (2015).

    Article  Google Scholar 

  11. A.P. Tschiptschin, in 36 Congresso Anual da Associação Brasileira de Metais, Rio de Janeiro

  12. K. Honda and S. Saito, J. Iron Steel Inst. 102, 261 (1920).

    Google Scholar 

  13. G. Speich and A. Szirmae, Trans. Met. Soc. AIME 245, 1063 (1969).

    Google Scholar 

  14. J. Cunningham, D. Medlin, and G. Krauss, J. Mater. Eng. Perform. 8, 401 (1999).

    Article  Google Scholar 

  15. T. Nakano, H. Kawatani, and S. Kinoshita, Trans. Iron Steel Inst. Jpn. 17, 110 (1977).

    Google Scholar 

  16. G.-H. Zhang, J.-Y. Chae, K.-H. Kim, and D. W. Suh, Mater. Charact. 81, 56 (2013).

    Article  Google Scholar 

  17. G. Molinder, Acta Metall. 4, 565 (1956).

    Article  Google Scholar 

  18. M. Hillert, K. Nilsson, and L.-E. Törndahl, J. Iron Steel Inst. 209, 49 (1971).

    Google Scholar 

  19. M. Gouné, P. Maugis, and J. Drillet, J. Mater. Sci. Technol. 28, 728 (2012).

    Article  Google Scholar 

  20. N. V. Luzginova, L. Zhao, and J. Sietsma, Metall. Mater. Trans. A 39, 513 (2008).

    Article  Google Scholar 

  21. A.S. Pandit and H.K.D.H. Bhadeshia, in Proc. R. Soc. A, vol. 468 (The Royal Society), p. 2767.

  22. D. Tawfik, P.J. Mutton, and W.K. Chiu, J. Mater. Process. Technol., 196, 279 (2008).

    Article  Google Scholar 

  23. C.-M. Li, F. Sommer, and E.J. Mittemeijer, Z. Metallkd., 92, 32 (2001).

    Google Scholar 

  24. R.R. Porcaro, D.A.P. Lima, G.L. Faria, L.B. Godefroid, and L.C. Cândido, Soldagem Inspeção 22, 59 (2017)

    Article  Google Scholar 

  25. M. Ueda, K. Mastushita, K. Iwano, A. Kobayashi, T. Yamamoto, T. Miyazaki, J. Takahashi, and Y. Kobayashi, Nippon Steel Sumitomo Met. Tech. Rep. 105, 63 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for discussions with Amilton Sinátora, André Paulo Tschitschin and Luiz Henrique Dias Alves, for the help of Dany Michell Andrade Centeno on obtaining SEM images and Vale (Wheel-Rail Chair), CAPES and CNPq for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Pintol Nishikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, L.P., Goldenstein, H. Divorced Eutectoid on Heat-Affected Zone of Welded Pearlitic Rails. JOM 71, 815–823 (2019). https://doi.org/10.1007/s11837-018-3213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3213-5

Navigation