Log in

Comparison of In Situ Micromechanical Strain-Rate Sensitivity Measurement Techniques

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Strain-rate sensitivity (SRS) measurements using transient small-scale techniques are becoming increasingly popular for investigating nanostructured films and microcomponents since they can provide fundamental insights into the plastic deformation mechanisms within small volumes of material. Previously, researchers have typically used either nanoindentation or microcompression strain-rate jump tests on a variety of nanostructured materials and compared the resultant values with bulk compression data as a reference. However, no systematic comparison of the different transient micromechanical techniques has been performed on the same material to establish their relative merits or the consistency of their results. In this study, the SRS of nanocrystalline nickel is investigated using three independent, in situ, transient experimental techniques: miniature tension, nanoindentation, and micropillar compression. The obtained SRS exponents m measured by all techniques were found to be in good agreement, and the resulting apparent activation volume V app of approximately 10 b 3 is consistent with grain boundary diffusion processes and dislocation glide-based plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  2. L. Wang and B.C. Prorok, J. Mater. Res. 23, 55 (2011).

    Article  Google Scholar 

  3. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).

    Article  Google Scholar 

  4. G. Palumbo, S.J. Thorpe, and K.T. Aust, Scripta Metall. Mater. 24, 1347 (1990).

    Article  Google Scholar 

  5. N. Wang, Z. Wang, K.T. Aust, and U. Erb, Acta Metall. Mater. 43, 519 (1995).

    Article  Google Scholar 

  6. N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon, Adv. Mater. 18, 34 (2006).

    Article  Google Scholar 

  7. H. Van Swygenhoven, Mater. Sci. Eng. A 483–484, 33 (2008).

    Article  Google Scholar 

  8. R.L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  9. T. Langdon, J. Mater. Sci. 41, 597 (2006).

    Article  Google Scholar 

  10. R. Valiev, Nat. Mater. 3, 511 (2004).

    Article  Google Scholar 

  11. F. Dalla Torre, H. Van Swygenhoven, and M. Victoria, Acta Mater. 50, 3957 (2002).

    Article  Google Scholar 

  12. Y.F. Shen, L. Lu, Q.H. Lu, Z.H. **, and K. Lu, Scripta Mater. 52, 989 (2005).

    Article  Google Scholar 

  13. E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, and K. Lu, Appl. Phys. Lett. 85, 4932 (2004).

    Article  Google Scholar 

  14. Y.M. Wang and E. Ma, Mater. Sci. Eng. A 375–377, 46 (2004).

    Article  Google Scholar 

  15. J.-Y. Kim and J.R. Greer, Acta Mater. 57, 5245 (2009).

    Article  Google Scholar 

  16. Y. Wang, A. Hamza, and E. Ma, Acta Mater. 54, 2715 (2006).

    Article  Google Scholar 

  17. N. Karanjgaokar, K. Jonnalagadda, I. Chasiotis, J. Chee, A. Mahmood, and D. Peroulis, Paper presented at the Proceedings XIth International Congress and Exposition (Orlando, FL, 2008).

  18. K.N. Jonnalagadda, I. Chasiotis, S. Yagnamurthy, J. Lambros, J. Pulskamp, R. Polcawich, and M. Dubey, Exp. Mech. 50, 25 (2009).

    Article  Google Scholar 

  19. D.S. Gianola, D.H. Warner, J.F. Molinari, and K.J. Hemker, Scripta Mater. 55, 649 (2006).

    Article  Google Scholar 

  20. Q. Wei, S. Cheng, K. Ramesh, and E. Ma, Mater. Sci. Eng. A 381, 71 (2004).

    Article  Google Scholar 

  21. M.J. Mayo and W.D. Nix, Acta Metall. 36, 2183 (1988).

    Article  Google Scholar 

  22. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh, Acta Mater. 51, 5159 (2003).

    Article  Google Scholar 

  23. D. Pan and M.W. Chen, J. Mater. Res. 24, 1466 (2011).

    Article  Google Scholar 

  24. V. Maier, K. Durst, and J. Mueller, J. Mater. Res. 28, 1421 (2011).

    Article  Google Scholar 

  25. J.M. Wheeler, V. Maier, K. Durst, M. Göken, and J. Michler, Mater. Sci. Eng. A 585, 108 (2013).

    Article  Google Scholar 

  26. V. Maier, C. Schunk, M. Göken, and K. Durst, Philos. Mag. 1–14 (2014).

  27. M. Uchic, D. Dimiduk, J. Florando, and W. Nix, Science 305, 986 (2004).

    Article  Google Scholar 

  28. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580 (2008).

    Article  Google Scholar 

  29. J.M. Wheeler, C. Niederberger, C. Tessarek, S. Christiansen, and J. Michler, Int. J. Plast. 40, 140 (2013).

    Article  Google Scholar 

  30. J.S. Carpenter, A. Misra, M.D. Uchic, and P.M. Anderson, Appl. Phys. Lett. 101, 051901 (2012).

    Article  Google Scholar 

  31. G. Mohanty, J.M. Wheeler, R. Raghavan, J. Wehrs, M. Hasegawa, S. Mischler, L. Philippe, and J. Michler, Philos. Mag. 1–18 (2014).

  32. V. Saile, LIGA Appl. 7, 1 (2009).

    Article  Google Scholar 

  33. T.J. Rupert, J.C. Trenkle, and C.A. Schuh, Acta Mater. 59, 1619 (2011).

    Article  Google Scholar 

  34. J.R. Trelewicz and C.A. Schuh, Acta Mater. 55, 5948 (2007).

    Article  Google Scholar 

  35. A. Detor and C. Schuh, Acta Mater. 55, 371 (2007).

    Article  Google Scholar 

  36. W.M. Yin, S.H. Whang, R. Mirshams, and C.H. **ao, Mater. Sci. Eng. A 301, 18 (2001).

    Article  Google Scholar 

  37. W.M. Yin and S.H. Whang, Scripta Mater. 44, 569 (2001).

    Article  Google Scholar 

  38. W.M. Yin, S.H. Whang, and R.A. Mirshams, Acta Mater. 53, 383 (2005).

    Article  Google Scholar 

  39. Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, and A. Hamza, Scripta Mater. 51, 1023 (2004).

    Article  Google Scholar 

  40. C.S. Barret and T.B. Massalski, Structure of Metals (Oxford: Pergamon Press, 1980).

    Google Scholar 

  41. P. Scherrer, Nachrichten von Der Gesellschaft Der Wissenschaften 98–100 (1918).

  42. J. Langford and A. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978).

    Article  Google Scholar 

  43. L.A. Giannuzzi and F.A. Stevie, Micron 30, 197 (1999).

    Article  Google Scholar 

  44. L. Philippe, P. Schwaller, G. Bürki, and J. Michler, J. Mater. Res. 23, 1383 (2011).

    Article  Google Scholar 

  45. B. Lucas and T. Kanade, IJCAI 121–130 (1981).

  46. R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, and J. Patscheider, Thin Solid Films 469–470, 206 (2004).

    Article  Google Scholar 

  47. J.M. Wheeler, P. Brodard, and J. Michler, Philos. Mag. 92, 3128 (2012).

    Article  Google Scholar 

  48. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  49. S.A.S. Asif, K.J. Wahl, and R.J. Colton, Rev. Sci. Instrum. 70, 2408 (1999).

    Article  Google Scholar 

  50. W. Oliver and G. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  Google Scholar 

  51. B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  52. D. Caillard and J.L. Martin, Pergamon Mater. Ser. 8, 3 (2003).

    Article  Google Scholar 

  53. G.E. Dieter and D. Bacon, Mechanical Metallurgy (New York: McGraw-Hill, 1986), p. 751.

    Google Scholar 

  54. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi, Science 318, 251 (2007).

    Article  Google Scholar 

  55. E. Hart, Acta Metall. 15, 351 (1967).

    Article  Google Scholar 

  56. R. Goodall and T.W. Clyne, Acta Mater. 54, 5489 (2006).

    Article  Google Scholar 

  57. J.J. Vlassak and W.D. Nix, Philos. Mag. A 67, 1045 (1993).

    Article  Google Scholar 

  58. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh, Acta Mater. 53, 2169 (2005).

    Article  Google Scholar 

  59. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  60. H. Vehoff, D. Lemaire, K. Schüler, T. Waschkies, and B. Yang, Int. J. Mater. Res. 98, 259 (2007).

    Article  Google Scholar 

  61. X. Shen, J. Lian, Z. Jiang, and Q. Jiang, Mater. Sci. Eng. A 487, 410 (2008).

    Article  Google Scholar 

  62. A.G. Evans and R.D. Rawlings, Phys. Status Solidi 34, 9 (1969).

    Article  Google Scholar 

  63. A.T. Jennings, J. Li, and J.R. Greer, Acta Mater. 59, 5627 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank G. Bürki and A. Böll for technical assistance with the miniature tensile stage and the SEM indenter, and they thank N. Siegfried for performing the GDOES measurements. Funding by the Commission for Technology and Innovation (CTI) within the Project No. 209673 is gratefully acknowledged. G. Mohanty and G. Guillonneau would like to acknowledge funding from the EMPA post-doctoral fellowship program NANOCREEP cofunded by FP7: Marie Curie Actions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juri Wehrs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehrs, J., Mohanty, G., Guillonneau, G. et al. Comparison of In Situ Micromechanical Strain-Rate Sensitivity Measurement Techniques. JOM 67, 1684–1693 (2015). https://doi.org/10.1007/s11837-015-1447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1447-z

Keywords

Navigation