Log in

Improvement of Thermoelectric Properties Via Combination of Nanostructurization and Elemental Do**

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Since the nanostructure was introduced to modify thermoelectric properties in 1993, many efforts have been devoted to fabricate nanostructures and investigate the electrical and thermal transports in nanostructured materials. Compared with low-dimensional materials, nanocomposites not only exhibit nanofeatures but also can be fabricated in large quantities and compatible with practical thermoelectric devices in scale and shape. This article reviews the background of nanocomposites, then the Mg2(Si0.4Sn0.6)Bi x solid solutions. High-manganese silicides with MnSi (HMS–MnSi), and In4−x Gd x Se3 compounds are selected as examples to illustrate the combination effect of nanostructure and dopants on thermoelectric properties. In situ nanostructures successfully formed during the rapid cooling and spark-plasma sintering processing and elementaldo** were achieved via melting processing. Electrical conductivities were enhanced as a result of the increased carrier concentration or carrier mobility by elemental do**. Meanwhile, thermal conductivities decreased as a result of the strong phonon scattering intensified by nanostructures. The ZTs for the specimens with optimal do** ratio were enhanced in these three types of thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.M. Rowe, Renew. Energy 16, 1251 (1999).

    Article  Google Scholar 

  2. S.B. Riffat and X.L. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  3. R.G. Lange and W.P. Carroll, Energy Convers. Manag. 49, 393 (2008).

    Article  Google Scholar 

  4. R.C. O’Brien, R.M. Ambrosia, N.P. Bannistera, S.D. Howeb, and H.V. Atkinsonc, J. Nucl. Mater. 377, 506 (2008).

    Article  Google Scholar 

  5. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  6. G.A. Slack and M.A. Hussain, J. Appl. Phys. 70, 2694 (1991).

    Article  Google Scholar 

  7. T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  8. D.M. Rowe and C.M. Bhandari, Modern Thermoelectric (Reston, VA: Reston Publishing Company Inc., 1983).

    Google Scholar 

  9. H.J. Goldsmid, Thermoelectric Refrigeration (New York: Plenum, 1964).

    Book  Google Scholar 

  10. L. Hicks and M. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  11. L.D. Hicks, T.C. Harman, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 53, R10493 (1996).

    Article  Google Scholar 

  12. Y.M. Lin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, and J.P. Heremans, Appl. Phys. Lett. 76, 3944 (2000).

    Article  Google Scholar 

  13. T. Koga, S.B. Cronin, M.S. Dresselhaus, J.L. Liu, and K.L. Wang, Appl. Phys. Lett. 77, 1490 (2000).

    Article  Google Scholar 

  14. Y.I. Ravich, B.A. Efimova, and V.I. Tamarchenko, Phys. Status Solidi B 48, 453 (1971).

    Article  Google Scholar 

  15. L.D. Hicks, T.C. Harman, and M.S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993).

    Article  Google Scholar 

  16. R.G. Yang and G. Chen, Phys. Rev. B 69, 195316 (2004).

    Article  Google Scholar 

  17. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  18. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  Google Scholar 

  19. W.S. Liu, X. Yan, G. Chen, and Z.F. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  20. P. Norouzzadeh, Z. Zamanipour, J.S. Krasinski, and D. Vashaee, J. Appl. Phys. 112, 124308 (2012).

    Article  Google Scholar 

  21. G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Nano Lett. 8, 4670 (2008).

    Article  Google Scholar 

  22. A. Soni, Y.Y. Zhao, L.G. Yu, M.K.K. Aik, M.S. Dresselhaus, and Q.H. **ong, Nano Lett. 12, 1203 (2012).

    Article  Google Scholar 

  23. W.D. Shi, L. Zhou, S.Y. Song, J.H. Yang, and H.J. Zhang, Adv. Mater. 20, 1892 (2008).

    Article  Google Scholar 

  24. X. Tang, W.J. **e, H. Li, W.Y. Zhao, Q.J. Zhang, and N. Masayuki, Appl. Phys. Lett. 90, 012102 (2007).

    Article  Google Scholar 

  25. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  26. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  27. M. Zhou, J.F. Li, and T. Kita, J. Am. Chem. Soc. 130, 4527 (2008).

    Article  Google Scholar 

  28. H. Wang, J.F. Li, C.W. Nan, M. Zhou, W.S. Liu, B.P. Zhang, and T. Kita, Appl. Phys. Lett. 88, 092104 (2006).

    Article  Google Scholar 

  29. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  30. T. Ikeda, L. Haviez, Y.L. Li, and G.J. Snyder, Small 8, 2350 (2012).

    Article  Google Scholar 

  31. J. Eilertsen, S. Rouvimov, and M.A. Subramanian, Acta Mater. 60, 2178 (2012).

    Article  Google Scholar 

  32. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Nano Lett. 11, 556 (2011).

    Article  Google Scholar 

  33. X. Yan, W.S. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H.Z. Wang, D.Z. Wang, G. Chen, and Z.F. Ren, Energy Environ. Sci. 5, 7543 (2012).

    Article  Google Scholar 

  34. W.S. Liu, Q.Y. Zhang, Y.C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D.Z. Wang, G. Chen, and Z.F. Ren, Adv. Energy Mater. 1, 577 (2011).

    Article  Google Scholar 

  35. F. Bridges, T. Keiber, S. Medling, and B.C. Sales, Phys. Status Solidi C 10, 236 (2013).

    Article  Google Scholar 

  36. M.K. Han, K. Ahn, H.J. Kim, J.S. Rhyee, and S.J. Kim, J. Mater. Chem. 21, 11365 (2011).

    Article  Google Scholar 

  37. Z.S. Lin, L. Chen, L.M. Wang, J.T. Zhao, and L.M. Wu, Adv. Mater. 25, 1 (2013).

    Article  Google Scholar 

  38. Z. **ong, X.H. Chen, X.Y. Huang, S.Q. Bai, and L.D. Chen, Acta Mater. 58, 3995 (2010).

    Article  Google Scholar 

  39. W.H. Luo, H. Li, Y.G. Yan, Z.B. Lin, X.F. Tang, Q.J. Zhang, and C. Uher, Intermetallics 19, 404 (2011).

    Article  Google Scholar 

  40. B.L. Du, H. Lia, J.J. Xu, X.F. Tang, and C. Uher, J. Solid State Chem. 184, 109 (2011).

    Article  Google Scholar 

  41. X. Zhang, H.L. Liu, Q.M. Lu, J.X. Zhang, and F.P. Zhang, Appl. Phys. Lett. 103, 063901 (2013).

    Article  Google Scholar 

  42. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  43. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Article  Google Scholar 

  44. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q.J. Zhang, and C. Uher, Phys. Rev. B 108, 166601 (2012).

    Google Scholar 

  45. D.A. Pshenai-Severin, M.I. Fedorov, and A.Y. Samunin, J. Electron. Mater. 42, 1707 (2013).

    Article  Google Scholar 

  46. W. Liu, X.F. Tang, H. Li, J. Sharp, X.Y. Zhou, and C. Uher, J. Mater. Chem. 22, 13653 (2012).

    Article  Google Scholar 

  47. M. Paliwal and I.H. Jung, CALPHAD 33, 744 (2009).

    Article  Google Scholar 

  48. T. Kajikawa, N. Kimura, and T. Yokoyama (Paper presented at the 22nd International Conference on Thermoelectrics, 2003).

  49. T. Dasgupta, C. Stiewea, R. Hassdorfa, L. Boettchera, and E. Mueller, Materials Research Society Symposium Proceedings 1267, ed. J.R. Greer, D.S. Gianola, B.G. Clark, T. Zhu, and A.H.W. Ngan (Warrendale, PA: MRS, 2010), pp. 287–292.

  50. W. Liu, Q. Zhang, K. Yin, H. Chi, X.Y. Zhou, X.F. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).

    Article  Google Scholar 

  51. G. Chen, Nanoscale Energy Transport and Conversion (New York: Oxford University Press, 2005).

    Google Scholar 

  52. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson, Phys. Rev. B 56, 15081 (1997).

    Article  Google Scholar 

  53. N. Satyala and D. Vashaee, Appl. Phys. Lett. 100, 073107 (2012).

    Article  Google Scholar 

  54. C.L. Wan, Y.F. Wang, N. Wang, W. Norimatsu, M. Kusunoki, and K. Koumoto, Sci. Technol. Adv. Mater. 11, 044306 (2010).

    Article  Google Scholar 

  55. M.C. Bost and J.E. Mahan, J. Electron. Mater. 16, 6 (1987).

    Article  Google Scholar 

  56. S. Zhou, K. Potzger, G.F. Zhang, A. Mücklich, F. Eichhorn, N. Schell, R. Grötzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, and D. Geiger, Phys. Rev. B 75, 085203 (2007).

    Article  Google Scholar 

  57. I. Kawasumi, M. Sakata, I. Nishida, and K. Masumoto, J. Mater. Sci. 16, 355 (1981).

    Article  Google Scholar 

  58. S. Asanabe, J. Phys. Soc. Jpn. 20, 933 (1965).

    Article  Google Scholar 

  59. E. Groß, M. Riffel, and U. Stöhrer, J. Mater. Res. 10, 34 (1995).

    Article  Google Scholar 

  60. C. Kittel, Introduction to Solid State Physics, 8th ed. (New York: Wiley, 2004).

    Google Scholar 

  61. M. Umemoto, Z.G. Liu, R. Omatsuzawa, and K. Tsuchiya, Mater. Sci. Forum 343, 918 (2000).

    Article  Google Scholar 

  62. G. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics (Berlin: Springer, 2001).

    Book  MATH  Google Scholar 

  63. J.S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S.I. Kim, E. Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar, Nature 459, 965 (2009).

    Article  Google Scholar 

  64. E.M. Levin, S.L. Bud’Ko, and K. Schmidt-Rohr, Adv. Funct. Mater. 22, 2766 (2012).

    Article  Google Scholar 

  65. B.A. Cook, J.L. Harringa, M. Besser, and R. Venkatasubramanian, Materials Research Society Symposium Proceedings for Energy Harvesting-Recent Advances in Materials, Devices and Applications, ed. R. Venkatasubramanian, H. Radousky, and H. Liang (San Francisco, CA: MRS Spring Meeting, 2011), pp. 15–22.

  66. J. Liu, C.L. Wang, Y. Li, W.B. Su, Y.H. Zhu, J.C. Li, and L.M. Mei, J. Appl. Phys. 114, 223714 (2013).

    Article  Google Scholar 

  67. J.E. Huheey, E.A. Keiter, and R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. (New York: HarperCollins, 1993).

    Google Scholar 

  68. R.D. Shannon and C.T. Prewitt, Acta Crystallogr. Sect. B 26, 1046 (1970).

    Article  Google Scholar 

  69. H. Chen, J.H. Li, and M.S. Chen, Adv. Mater. Res. 189, 3982 (2011).

    Article  Google Scholar 

  70. Y.S. Lim, J.Y. Cho, J.K. Lee, S.M. Choi, K.H. Kim, W.S. Seo, and H.H. Park, Electron. Mater. Lett. 6, 117 (2010).

    Article  Google Scholar 

  71. J.S. Rhyee, E. Cho, K. Ahn, K.H. Lee, and S.M. Lee, Appl. Phys. Lett. 97, 152104 (2010).

    Article  Google Scholar 

  72. N.F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (New York: Dover Publications, 1958).

    Google Scholar 

  73. K. Ahn, E. Cho, J.S. Rhyee, S.I. Kim, S.M. Lee, and K.H. Lee, Appl. Phys. Lett. 99, 102110 (2011).

    Article  Google Scholar 

  74. X.B. Zhao, S.H. Yang, Y.Q. Cao, J.L. Mi, Q. Zhang, and T.J. Zhu, J. Electron. Mater. 38, 1017 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support of this work from the National Natural Science Foundation of China (Grant Nos. 50801002, 50271001), the Prior Sci-Tech Programs of Overseas Chinese Talents Funds of Bei**g Municipal Bureau of Personnel (Q2009012200801), and Bei**g Municipal Education Commission and the Basic and Advanced Technology Research Project of Henan Province (Grant No. 132300410071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Guo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Backscattered electron image of specimen MnSi1.75 + 9 wt.% MnSi (TIFF 1106 kb)

Fig. S2

XRD patterns for specimens In4−x Gd x Se3 (x = 0, 0.05, and 0.10) after SPS (TIFF 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Guo, F., Shu, Y. et al. Improvement of Thermoelectric Properties Via Combination of Nanostructurization and Elemental Do**. JOM 66, 2298–2308 (2014). https://doi.org/10.1007/s11837-014-1148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1148-z

Keywords

Navigation