Log in

Advances in Deep Learning Techniques for Short-term Energy Load Forecasting Applications: A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Today, the majority of the leading power companies place a significant emphasis on forecasting the electricity load in the balance of power and administration. Meanwhile, since electricity is an integral component of every person’s contemporary life, energy load forecasting is necessary to afford the energy demand required. The expansion of the electrical infrastructure is a key factor in increasing sustainable economic growth, and the planning and control of the utility power system rely on accurate load forecasting. Due to uncertainty in energy utilization, forecasting is turning into a complex task, and it makes an impact on applications that include energy scheduling and management, price forecasting, etc. The statistical methods involving time series for regression analysis and machine learning techniques have been used in energy load forecasting extensively over the last few decades to precisely predict future energy demands. However, they have some drawbacks with limited model flexibility, generalization, and overfitting. Deep learning addresses the issues of handling unstructured and unlabeled data, automatic feature learning, non-linear model flexibility, the ability to handle high-dimensional data, and simultaneous computation using GPUs efficiently. This paper investigates factors influencing energy load forecasting, then discusses the most commonly used deep learning approaches in energy load forecasting, as well as evaluation metrics to evaluate the performance of the model, followed by bio-inspired algorithms to optimize the model, and other advanced technologies for energy load forecasting. This study discusses the research findings, challenges, and opportunities in energy load forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nti IK, Teimeh M, Nyarko-Boateng O, Adekoya AF (2020) Electricity load forecasting: a systematic review. J Electr Syst Inf Technol 7:1–19. https://doi.org/10.1186/s43067-020-00021-8

    Article  Google Scholar 

  2. Guo Z, Zhou K, Zhang X, Yang S (2018) A deep learning model for short-term power load and probability density forecasting. Energy 160:1186–1200. https://doi.org/10.1016/j.energy.2018.07.090

    Article  Google Scholar 

  3. Tian C, Ma J, Zhang C, Zhan P (2018) A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network. Energies 11(12):3493. https://doi.org/10.3390/en11123493

    Article  Google Scholar 

  4. Kuo PH, Huang CJ (2018) A high precision artificial neural networks model for short-term energy load forecasting. Energies 11(1):213. https://doi.org/10.3390/en11010213

    Article  Google Scholar 

  5. Ryu S, Noh J, Kim H (2016) Deep neural network based demand side short term load forecasting. Energies 10(1):3. https://doi.org/10.3390/en10010003

    Article  Google Scholar 

  6. Aurangzeb K, Alhussein M, Javaid K, Haider SI (2021) A pyramid-CNN based deep learning model for power load forecasting of similar-profile energy customers based on clustering. IEEE Access 9:14992–15003. https://doi.org/10.1109/ACCESS.2021.3053069

    Article  Google Scholar 

  7. Ibrahim B, Rabelo L (2021) A deep learning approach for peak load forecasting: a case study on panama. Energies 14(11):3039. https://doi.org/10.3390/en14113039

    Article  Google Scholar 

  8. Adewuyi SA, Aina S, Oluwaranti AI (2020) A deep learning model for electricity demand forecasting based on a tropical data. Appl Comput Sci 16(1):5–17. https://doi.org/10.35784/acs-2020-01

    Article  Google Scholar 

  9. Fekri MN, Patel H, Grolinger K, Sharma V (2021) Deep learning for load forecasting with smart meter data: online adaptive recurrent neural network. Appl Energy 282:116177. https://doi.org/10.1016/j.apenergy.2020.116177

    Article  Google Scholar 

  10. Sinha A, Tayal R, Vyas A, Pandey P, Vyas OP (2021) Forecasting electricity load with hybrid scalable model based on stacked non linear residual approach. Front Energy Res 9:720406. https://doi.org/10.3389/fenrg.2021.720406

    Article  Google Scholar 

  11. Sajjad M, Khan ZA, Ullah A, Hussain T, Ullah W, Lee MY, Baik SW (2020) A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. IEEE Access 8:143759–143768. https://doi.org/10.1109/ACCESS.2020.3009537

    Article  Google Scholar 

  12. Tien PW, Wei S, Calautit JK, Darkwa J, Wood C (2020) A vision-based deep learning approach for the detection and prediction of occupancy heat emissions for demand-driven control solutions. Energy Build 226:110386. https://doi.org/10.1016/j.enbuild.2020.110386

    Article  Google Scholar 

  13. Das A, Annaqeeb MK, Azar E, Novakovic V, Kjærgaard MB (2020) Occupant-centric miscellaneous electric loads prediction in buildings using state-of-the-art deep learning methods. Appl Energy 269:115135. https://doi.org/10.1016/j.apenergy.2020.115135

    Article  Google Scholar 

  14. Kong W, Dong ZY, Jia Y, Hill DJ, Xu Y, Zhang Y (2017) Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans Smart Grid 10(1):841–851. https://doi.org/10.1109/TSG.2017.2753802

    Article  Google Scholar 

  15. Wang Z, Hong T, Piette MA (2019) Predicting plug loads with occupant count data through a deep learning approach. Energy 181:29–42. https://doi.org/10.1016/j.energy.2019.05.138

    Article  Google Scholar 

  16. Wang Z, Hong T, Piette MA (2019) Data fusion in predicting internal heat gains for office buildings through a deep learning approach. Appl Energy 240:386–398. https://doi.org/10.1016/j.apenergy.2019.02.066

    Article  Google Scholar 

  17. Zhang B, Wu JL, Chang PC (2018) A multiple time series-based recurrent neural network for short-term load forecasting. Soft Comput 22(12):4099–4112. https://doi.org/10.1007/s00500-017-2624-5

    Article  Google Scholar 

  18. Zhang W, Chen Q, Yan J, Zhang S, Xu J (2021) A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting. Energy 236:121492. https://doi.org/10.1016/j.energy.2021.121492

    Article  Google Scholar 

  19. Sideratos G, Ikonomopoulos A, Hatziargyriou ND (2020) A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks. Electr Power Syst Res 178:106025. https://doi.org/10.1016/j.epsr.2019.106025

    Article  Google Scholar 

  20. Ünal F, Almalaq A, Ekici S (2021) A novel load forecasting approach based on smart meter data using advance preprocessing and hybrid deep learning. Appl Sci 11(6):2742. https://doi.org/10.3390/app11062742

    Article  Google Scholar 

  21. Rafi SH, Nahid-Al-Masood, Deeba SR, Hossain E (2021) A short-term load forecasting method using integrated CNN and LSTM network. IEEE Access 9:32436–32448. https://doi.org/10.1109/ACCESS.2021.3060654

    Article  Google Scholar 

  22. **a M, Shao H, Ma X, de Silva CW (2021) A stacked GRU-RNN-based approach for predicting renewable energy and electricity load for smart grid operation. IEEE Trans Ind Inf 17(10):7050–7059. https://doi.org/10.1109/TII.2021.3056867

    Article  Google Scholar 

  23. Shen Y, Ma Y, Deng S, Huang CJ, Kuo PH (2021) An ensemble model based on deep learning and data preprocessing for short-term electrical load forecasting. Sustainability 13(4):1694. https://doi.org/10.3390/su13041694

    Article  Google Scholar 

  24. Arvanitidis AI, Bargiotas D, Daskalopulu A, Kontogiannis D, Panapakidis IP, Tsoukalas LH (2022) Clustering informed MLP models for fast and accurate short-term load forecasting. Energies 15(4):1295. https://doi.org/10.3390/en15041295

    Article  Google Scholar 

  25. Kim SH, Lee G, Kwon GY, Kim DI, Shin YJ (2018) Deep learning based on multi-decomposition for short-term load forecasting. Energies 11(12):3433. https://doi.org/10.3390/en11123433

    Article  Google Scholar 

  26. Sehovac L, Grolinger K (2020) Deep learning for load forecasting: sequence to sequence recurrent neural networks with attention. IEEE Access 8:36411–36426. https://doi.org/10.1109/ACCESS.2020.2975738

    Article  Google Scholar 

  27. Moradzadeh A, Moayyed H, Zakeri S, Mohammadi-Ivatloo B, Aguiar AP (2021) Deep learning-assisted short-term load forecasting for sustainable management of energy in microgrid. Inventions 6(1):15. https://doi.org/10.3390/inventions6010015

    Article  Google Scholar 

  28. Jahangir H, Tayarani H, Gougheri SS, Golkar MA, Ahmadian A, Elkamel A (2020) Deep learning-based forecasting approach in smart grids with microclustering and bidirectional LSTM network. IEEE Trans Ind Electron 68(9):8298–8309. https://doi.org/10.1109/TIE.2020.3009604

    Article  Google Scholar 

  29. Syed D, Abu-Rub H, Ghrayeb A, Refaat SS, Houchati M, Bouhali O, Bañales S (2021) Deep learning-based short-term load forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access 9:54992–55008. https://doi.org/10.1109/ACCESS.2021.3071654

    Article  Google Scholar 

  30. ** XB, Zheng WZ, Kong JL, Wang XY, Bai YT, Su TL, Lin S (2021) Deep-learning forecasting method for electric power load via attention-based encoder–decoder with bayesian optimization. Energies 14(6):1596. https://doi.org/10.3390/en14061596

    Article  Google Scholar 

  31. Hoori AO, Al Kazzaz A, Khimani R, Motai Y, Aved AJ (2019) Electric load forecasting model using a multicolumn deep neural networks. IEEE Trans Ind Electron 67(8):6473–6482. https://doi.org/10.1109/TIE.2019.2939988

    Article  Google Scholar 

  32. Mohammad F, Kim YC (2020) Energy load forecasting model based on deep neural networks for smart grids. Int J Syst Assur Eng Manag 11(4):824–834. https://doi.org/10.1007/s13198-019-00884-9

    Article  Google Scholar 

  33. Ozcan A, Catal C, Kasif A (2021) Energy load forecasting using a dual-stage attention-based recurrent neural network. Sensors 21(21):7115. https://doi.org/10.3390/s21217115

    Article  Google Scholar 

  34. Ko MS, Lee K, Hur K (2022) Feedforward error learning deep neural networks for multivariate deterministic power forecasting. IEEE Trans Ind Inf 18(9):6214–6223. https://doi.org/10.1109/TII.2022.3160628

    Article  Google Scholar 

  35. Phyo PP, Byun YC (2021) Hybrid ensemble deep learning-based approach for time series energy prediction. Symmetry 13(10):1942. https://doi.org/10.3390/sym13101942

    Article  Google Scholar 

  36. Lee E, Rhee W (2021) Individualized short-term electric load forecasting with deep neural network based transfer learning and meta learning. IEEE Access 9:15413–15425. https://doi.org/10.1109/ACCESS.2021.3053317

    Article  Google Scholar 

  37. Ijaz K, Hussain Z, Ahmad J, Ali SF, Adnan M, Khosa I (2022) A novel temporal feature selection based lstm model for electrical short-term load forecasting. IEEE Access 10:82596–82613. https://doi.org/10.1109/ACCESS.2022.3196476

    Article  Google Scholar 

  38. Inteha A, Nahid-Al-Masood, Hussain F, Khan IA (2022) A data driven approach for day ahead short term load forecasting. IEEE Access 10:84227–84243. https://doi.org/10.1109/ACCESS.2022.3197609

    Article  Google Scholar 

  39. Islam BU, Ahmed SF (2022) Short-term electrical load demand forecasting based on lstm and rnn deep neural networks. Math Probl Eng 2022:2316474

    Article  Google Scholar 

  40. Atef S, Nakata K, Eltawil AB (2022) A deep bi-directional long-short term memory neural network-based methodology to enhance short-term electricity load forecasting for residential applications. Comput Ind Eng 170:108364. https://doi.org/10.1016/j.cie.2022.108364

    Article  Google Scholar 

  41. Kiruthiga D, Manikandan V (2022) Intraday time series load forecasting using Bayesian deep learning method—a new approach. Electr Eng 104(3):1697–1709. https://doi.org/10.1007/s00202-021-01411-5

    Article  Google Scholar 

  42. Yang E, Youn CH (2022) Temporal data pooling with meta-initialization for individual short-term load forecasting. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2022.3225805

    Article  Google Scholar 

  43. Yang Y, Wang Z, Gao Y, Wu J, Zhao S, Ding Z (2022) An effective dimensionality reduction approach for short-term load forecasting. Electr Power Syst Res 210:108150. https://doi.org/10.1016/j.epsr.2022.108150

    Article  Google Scholar 

  44. Zhang G, Wei C, **g C, Wang Y (2022) Short-term electrical load forecasting based on time augmented transformer. Int J Comput Intell Syst 15(1):67. https://doi.org/10.1007/s44196-022-00128-y

    Article  Google Scholar 

  45. Shuai H, He H (2020) Online scheduling of a residential microgrid via Monte-Carlo tree search and a learned model. IEEE Trans Smart Grid 12(2):1073–1087. https://doi.org/10.1109/TSG.2020.3035127

    Article  Google Scholar 

  46. Hong Y, Zhou Y, Li Q, Xu W, Zheng X (2020) A deep learning method for short-term residential load forecasting in smart grid. IEEE Access 8:55785–55797. https://doi.org/10.1109/ACCESS.2020.2981817

    Article  Google Scholar 

  47. Masood Z, Gantassi R, Ardiansyah, Choi Y (2022) A multi-step time-series clustering-based Seq2Seq LSTM learning for a single household electricity load forecasting. Energies 15(7):2623. https://doi.org/10.3390/en15072623

    Article  Google Scholar 

  48. Truong LH, Chow KH, Luevisadpaibul R, Thirunavukkarasu GS, Seyedmahmoudian M, Horan B, Mekhilef S, Stojcevski A (2021) Accurate prediction of hourly energy consumption in a residential building based on the occupancy rate using machine learning approaches. Appl Sci 11(5):2229. https://doi.org/10.3390/app11052229

    Article  Google Scholar 

  49. Irfan M, Faizir R, Widianto W, Lestandy M, Faruq A (2021) Prediction of residential building energy efficiency performance using deep neural network. IAENG Int J Comput Sci 48(3):731–737

    Google Scholar 

  50. Abdel-Basset M, Hawash H, Sallam K, Askar SS, Abouhawwash M (2022) STLF-Net: two-stream deep network for short-term load forecasting in residential buildings. J King Saud Univ-Comput Inf Sci 34(7):4296–4311. https://doi.org/10.1016/j.jksuci.2022.04.016

    Article  Google Scholar 

  51. Çimen H, Wu Y, Wu Y, Terriche Y, Vasquez JC, Guerrero JM (2022) Deep learning-based probabilistic autoencoder for residential energy disaggregation: an adversarial approach. IEEE Trans Ind Inf 18(12):8399–8408. https://doi.org/10.1109/TII.2022.3150334

    Article  Google Scholar 

  52. Zhang Z, Zhao P, Wang P, Lee WJ (2022) Transfer learning featured short-term combining forecasting model for residential loads with small sample sets. IEEE Trans Ind Appl 58(4):4279–4288. https://doi.org/10.1109/TIA.2022.3170385

    Article  Google Scholar 

  53. Ji X, Huang H, Chen D, Yin K, Zuo Y, Chen Z, Bai R (2022) A hybrid residential short-term load forecasting method using attention mechanism and deep learning. Buildings 13(1):72. https://doi.org/10.3390/buildings13010072

    Article  Google Scholar 

  54. Langevin A, Cheriet M, Gagnon G (2023) Efficient deep generative model for short-term household load forecasting using non-intrusive load monitoring. Sustain Energy Grids Netw 34:101006. https://doi.org/10.1016/j.segan.2023.101006

    Article  Google Scholar 

  55. Aouad M, Hajj H, Shaban K, Jabr RA, El-Hajj W (2022) A CNN-sequence-to-sequence network with attention for residential short-term load forecasting. Electr Power Syst Res 211:108152. https://doi.org/10.1016/j.epsr.2022.108152

    Article  Google Scholar 

  56. Ozer I, Efe SB, Ozbay H (2021) A combined deep learning application for short term load forecasting. Alexandria Eng J 60(4):3807–3818. https://doi.org/10.1016/j.aej.2021.02.050

    Article  Google Scholar 

  57. Fu G (2018) Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system. Energy 148:269–282. https://doi.org/10.1016/j.energy.2018.01.180

    Article  Google Scholar 

  58. Sajjad M, Khan SU, Khan N, Haq IU, Ullah A, Lee MY, Baik SW (2020) Towards efficient building designing: heating and cooling load prediction via multi-output model. Sensors 20(22):6419. https://doi.org/10.3390/s20226419

    Article  Google Scholar 

  59. Moradzadeh A, Moayyed H, Mohammadi-Ivatloo B, Aguiar AP, Anvari-Moghaddam A (2021) A secure federated deep learning-based approach for heating load demand forecasting in building environment. IEEE Access 10:5037–5050. https://doi.org/10.1109/ACCESS.2021.3139529

    Article  Google Scholar 

  60. Cai M, Pipattanasomporn M, Rahman S (2019) Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques. Appl Energy 236:1078–1088

    Article  Google Scholar 

  61. Nichiforov C, Stamatescu G, Stamatescu I, Făgărăşan I (2019) Evaluation of sequence-learning models for large-commercial-building load forecasting. Information 10(6):189. https://doi.org/10.3390/info10060189

    Article  Google Scholar 

  62. Skomski E, Lee JY, Kim W, Chandan V, Katipamula S, Hutchinson B (2020) Sequence-to-sequence neural networks for short-term electrical load forecasting in commercial office buildings. Energy Build 226:110350. https://doi.org/10.1016/j.enbuild.2020.110350

    Article  Google Scholar 

  63. Salmi T, Kiljander J, Pakkala D (2020) Stacked boosters network architecture for short-term load forecasting in buildings. Energies 13(9):2370. https://doi.org/10.3390/en13092370

    Article  Google Scholar 

  64. Jain R, Jain N, Gupta Y, Chugh T, Chugh T, Hemanth DJ (2020) A modified fuzzy logic relation-based approach for electricity consumption forecasting in India. Int J Fuzzy Syst 22(2):461–475. https://doi.org/10.1007/s40815-019-00704-z

    Article  Google Scholar 

  65. Bedi J, Toshniwal D (2019) Deep learning framework to forecast electricity demand. Appl Energy 238:1312–1326. https://doi.org/10.1016/j.apenergy.2019.01.113

    Article  Google Scholar 

  66. Javaid N, Naz A, Khalid R, Almogren A, Shafiq M, Khalid A (2020) ELS-Net: a new approach to forecast decomposed intrinsic mode functions of electricity load. IEEE Access 8:198935–198949. https://doi.org/10.1109/ACCESS.2020.3034113

    Article  Google Scholar 

  67. Bedi J, Toshniwal D (2018) Empirical mode decomposition based deep learning for electricity demand forecasting. IEEE Access 6:49144–49156. https://doi.org/10.1109/ACCESS.2018.2867681

    Article  Google Scholar 

  68. Qiu X, Ren Y, Suganthan PN, Amaratunga GA (2017) Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl Soft Comput 54:246–255. https://doi.org/10.1016/j.asoc.2017.01.015

    Article  Google Scholar 

  69. Bedi J, Toshniwal D (2020) Energy load time-series forecast using decomposition and autoencoder integrated memory network. Appl Soft Comput 93:106390. https://doi.org/10.1016/j.asoc.2020.106390

    Article  Google Scholar 

  70. Ebrahim AF, Mohammed OA (2018) Pre-processing of energy demand disaggregation based data mining techniques for household load demand forecasting. Inventions 3(3):45. https://doi.org/10.3390/inventions3030045

    Article  Google Scholar 

  71. Liu J, Zhang Y, Meng K, Dong ZY, Xu Y, Han S (2022) Real-time emergency load shedding for power system transient stability control: a risk-averse deep learning method. Appl Energy 307:118221. https://doi.org/10.1016/j.apenergy.2021.118221

    Article  Google Scholar 

  72. Yang W, Pang C, Huang J, Zeng X (2021) Sequence-to-point learning based on temporal convolutional networks for nonintrusive load monitoring. IEEE Trans Instrum Meas 70:1–10. https://doi.org/10.1109/TIM.2021.3106678

    Article  Google Scholar 

  73. Moradzadeh A, Moayyed H, Zare K, Mohammadi-Ivatloo B (2022) Short-term electricity demand forecasting via variational autoencoders and batch training-based bidirectional long short-term memory. Sustain Energy Technol Assess 52:102209. https://doi.org/10.1016/j.seta.2022.102209

    Article  Google Scholar 

  74. Zhang X, Ramírez-Mendiola JL, Li M, Guo L (2022) Electricity consumption pattern analysis beyond traditional clustering methods: a novel self-adapting semi-supervised clustering method and application case study. Appl Energy 308:118335

    Article  Google Scholar 

  75. Zhang J, Zhang H, Ding S, Zhang X (2021) Power consumption predicting and anomaly detection based on transformer and K-means. Front Energy Res 9:779587

    Article  Google Scholar 

  76. Ribeiro AM, do Carmo PR, Rodrigues IR, Sadok D, Lynn T, Endo PT (2020) Short-term firm-level energy-consumption forecasting for energy-intensive manufacturing: a comparison of machine learning and deep learning models. Algorithms 13(11):274. https://doi.org/10.3390/a13110274

    Article  MathSciNet  Google Scholar 

  77. Dong H, Zhu J, Li S, Wu W, Zhu H, Fan J (2023) Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks. Appl Energy 329:120281. https://doi.org/10.1016/j.apenergy.2022.120281

    Article  Google Scholar 

  78. Ndife AN, Rakwichian W, Muneesawang P, Mensin Y (2022) Smart power consumption forecast model with optimized weighted average ensemble. IAES Int J Artif Intell 11(3):1004. https://doi.org/10.11591/ijai.v11.i3.pp1004-1018

    Article  Google Scholar 

  79. Runge J, Zmeureanu R (2022) Deep learning forecasting for electric demand applications of cooling systems in buildings. Adv Eng Inf 53:101674. https://doi.org/10.1016/j.aei.2022.101674

    Article  Google Scholar 

  80. Su H, Chi L, Zio E, Li Z, Fan L, Yang Z, Liu Z, Zhang J (2021) An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems. Energy 235:121416. https://doi.org/10.1016/j.energy.2021.121416

    Article  Google Scholar 

  81. Luo S, Weng Y (2019) A two-stage supervised learning approach for electricity price forecasting by leveraging different data sources. Appl Energy 242:1497–1512. https://doi.org/10.1016/j.apenergy.2019.03.129

    Article  Google Scholar 

  82. Théate T, Mathieu S, Ernst D (2020) An artificial intelligence solution for electricity procurement in forward markets. Energies 13(23):6435. https://doi.org/10.3390/en13236435

    Article  Google Scholar 

  83. Ghiasvand FS, Afshar K, Bigdeli N (2022) Multi-retailer energy procurement in smart grid environment with the presence of renewable energy resources and energy storage system. J Energy Storage 55:105585. https://doi.org/10.1016/j.est.2022.105585

    Article  Google Scholar 

  84. Sadeghi S, Jahangir H, Vatandoust B, Golkar MA, Ahmadian A, Elkamel A (2021) Optimal bidding strategy of a virtual power plant in day-ahead energy and frequency regulation markets: a deep learning-based approach. Int J Electr Power Energy Syst 127:106646. https://doi.org/10.1016/j.ijepes.2020.106646

    Article  Google Scholar 

  85. Jahangir H, Gougheri SS, Vatandoust B, Golkar MA, Ahmadian A, Hajizadeh A (2020) Plug-in electric vehicle behavior modeling in energy market: a novel deep learning-based approach with clustering technique. IEEE Trans Smart Grid 11(6):4738–4748. https://doi.org/10.1109/TSG.2020.2998072

    Article  Google Scholar 

  86. Aslam S, Ayub N, Farooq U, Alvi MJ, Albogamy FR, Rukh G, Haider SI, Azar AT, Bukhsh R (2021) Towards electric price and load forecasting using cnn-based ensembler in smart grid. Sustainability 13(22):12653. https://doi.org/10.3390/su132212653

    Article  Google Scholar 

  87. Zhu X, Zeng B, Dong H, Liu J (2020) An interval-prediction based robust optimization approach for energy-hub operation scheduling considering flexible ram** products. Energy 194:116821. https://doi.org/10.1016/j.energy.2019.116821

    Article  Google Scholar 

  88. Mohammad F, Ahmed MA, Kim YC (2021) Efficient energy management based on convolutional long short-term memory network for smart power distribution system. Energies 14(19):6161. https://doi.org/10.3390/en14196161

    Article  Google Scholar 

  89. Afrasiabi M, Mohammadi M, Rastegar M, Kargarian A (2019) Multi-agent microgrid energy management based on deep learning forecaster. Energy 186:115873. https://doi.org/10.1016/j.energy.2019.115873

    Article  Google Scholar 

  90. Yaprakdal F, Yılmaz MB, Baysal M, Anvari-Moghaddam A (2020) A deep neural network-assisted approach to enhance short-term optimal operational scheduling of a microgrid. Sustainability 12(4):1653. https://doi.org/10.3390/su12041653

    Article  Google Scholar 

  91. Velloso A, Van Hentenryck P (2021) Combining deep learning and optimization for preventive security-constrained DC optimal power flow. IEEE Trans Power Syst 36(4):3618–3628. https://doi.org/10.1109/TPWRS.2021.3054341

    Article  Google Scholar 

  92. Ji Y, Wang J, Xu J, Li D (2021) Data-driven online energy scheduling of a microgrid based on deep reinforcement learning. Energies 14(8):2120. https://doi.org/10.3390/en14082120

    Article  Google Scholar 

  93. Yang T, Zhao L, Li W, Zomaya AY (2021) Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning. Energy 235:121377. https://doi.org/10.1016/j.energy.2021.121377

    Article  Google Scholar 

  94. Yin L, Li S (2021) Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems. Eng Appl Artif Intell 104:104326. https://doi.org/10.1016/j.engappai.2021.104326

    Article  Google Scholar 

  95. Bidgoli MA, Ahmadian A (2022) Multi-stage optimal scheduling of multi-microgrids using deep-learning artificial neural network and cooperative game approach. Energy 239:122036

    Article  Google Scholar 

  96. Ahmad T, Zhang D (2020) Novel deep regression and stump tree-based ensemble models for real-time load demand planning and management. IEEE Access 8:48030–48048. https://doi.org/10.1109/ACCESS.2020.2978937

    Article  Google Scholar 

  97. Li Y, Wang R, Yang Z (2021) Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting. IEEE Trans Sustain Energy 13(1):159–169. https://doi.org/10.1109/TSTE.2021.3105529

    Article  Google Scholar 

  98. Hassani H, Razavi-Far R, Saif M (2022) Real-time out-of-step prediction control to prevent emerging blackouts in power systems: a reinforcement learning approach. Appl Energy 314:118861. https://doi.org/10.1016/j.apenergy.2022.118861

    Article  Google Scholar 

  99. Yin L, Zhao L (2021) Rejectable deep differential dynamic programming for real-time integrated generation dispatch and control of micro-grids. Energy 225:120268. https://doi.org/10.1016/j.energy.2021.120268

    Article  Google Scholar 

  100. Cheng T, Zhu X, Gu X, Yang F, Mohammadi M (2021) Stochastic energy management and scheduling of microgrids in correlated environment: a deep learning-oriented approach. Sustain Cities Soc 69:102856. https://doi.org/10.1016/j.scs.2021.102856

    Article  Google Scholar 

  101. Deepanraj B, Senthilkumar N, Jarin T, Gurel AE, Sundar LS, Anand AV (2022) Intelligent wild geese algorithm with deep learning driven short term load forecasting for sustainable energy management in microgrids. Sustain Comput Inf Syst 36:100813. https://doi.org/10.1016/j.suscom.2022.100813

    Article  Google Scholar 

  102. Almalaq A, Zhang JJ (2018) Evolutionary deep learning-based energy consumption prediction for buildings. IEEE Access 7:1520–1531. https://doi.org/10.1109/ACCESS.2018.2887023

    Article  Google Scholar 

  103. Nafkha R, Ząbkowski T, Gajowniczek K (2021) Deep learning-based approaches to optimize the electricity contract capacity problem for commercial customers. Energies 14(8):2181. https://doi.org/10.3390/en14082181

    Article  Google Scholar 

  104. Wang F, Chen C, Zhang H, Ma Y (2022) Short-term load forecasting based on variational mode decomposition and chaotic grey wolf optimization improved random forest algorithm. J Appl Sci Eng 26(1):69–78. https://doi.org/10.6180/jase.202301_26(1).0008

    Article  Google Scholar 

  105. Chen X, Dong X, Shi L (2021) Short-term power load forecasting based on I-GWO-KELM algorithm. MATEC Web Conf EDP Sci 336:05021. https://doi.org/10.1051/matecconf/202133605021

    Article  Google Scholar 

  106. Dong Y, Ma X, Fu T (2021) Electrical load forecasting: a deep learning approach based on K-nearest neighbors. Appl Soft Comput 99:106900. https://doi.org/10.1016/j.asoc.2020.106900

    Article  Google Scholar 

  107. Chen XD, Hai-Yue Y, Wun JS, Wu CH, Wang CH, Li LL (2020) Power load forecasting in energy system based on improved extreme learning machine. Energy Explor Exploit 38(4):1194–1211. https://doi.org/10.1177/0144598720903797

    Article  Google Scholar 

  108. Huang Y, Li C (2021) Accurate heating, ventilation and air conditioning system load prediction for residential buildings using improved ant colony optimization and wavelet neural network. J Build Eng 35:101972

    Article  Google Scholar 

  109. Li Z, Chen Z (2023) Short-term load forecasting based on CEEMDAN-FE-ISSA-LightGBM model. Front Energy Res 11:1111786

    Article  Google Scholar 

  110. Wu C, Li J, Liu W, He Y, Nourmohammadi S (2023) Short-term electricity demand forecasting using a hybrid ANFIS–ELM network optimised by an improved parasitism–predation algorithm. Appl Energy 345:121316

    Article  Google Scholar 

  111. Hu H, **a X, Luo Y, Zhang C, Nazir MS, Peng T (2022) Development and application of an evolutionary deep learning framework of LSTM based on improved grasshopper optimization algorithm for short-term load forecasting. J Build Eng 57:104975

    Article  Google Scholar 

  112. Khan M, Seo J, Kim D (2020) Towards energy efficient home automation: a deep learning approach. Sensors 20(24):7187. https://doi.org/10.3390/s20247187

    Article  Google Scholar 

  113. Hu C, Zhang J, Yuan H, Gao T, Jiang H, Yan J, Gao DW, Wang FY (2022) Black swan event small-sample transfer learning (BEST-L) and its case study on electrical power prediction in COVID-19. Appl Energy 309:118458

    Article  Google Scholar 

  114. Peng C, Tao Y, Chen Z, Zhang Y, Sun X (2022) Multi-source transfer learning guided ensemble LSTM for building multi-load forecasting. Expert Syst Appl 202:117194. https://doi.org/10.1016/j.eswa.2022.117194L

    Article  Google Scholar 

  115. Mujeeb S, Javaid N, Javaid S, Rafique, A, Ilahi M (2018) Big data analytics for load forecasting in smart grids: a survey. In: Proc. Int. Conf. Cyber Security Comput. Sci.(ICONCS), pp 193–202

  116. Chen J, Gao T, Si R, Dai Y, Jiang Y, Zhang J (2022) residential short term load forecasting based on federated learning. In: 2022 IEEE 2nd international conference on digital twins and parallel intelligence (DTPI), IEEE. pp 1–6. https://doi.org/10.1109/DTPI55838.2022.9998969

  117. Fernández JD, Menci SP, Lee CM, Rieger A, Fridgen G (2022) Privacy-preserving federated learning for residential short-term load forecasting. Appl Energy 326:119915. https://doi.org/10.1016/j.apenergy.2022.119915

    Article  Google Scholar 

  118. Kostmann M, Härdle WK (2019) Forecasting in blockchain-based local energy markets. Energies 12(14):2718. https://doi.org/10.3390/en12142718

    Article  Google Scholar 

  119. Mukherjee A, Mukherjee P, De D, Dey N (2021) iGridEdgeDrone: hybrid mobility aware intelligent load forecasting by edge enabled Internet of Drone Things for smart grid networks. Int J Parallel Program 49(3):285–325. https://doi.org/10.1007/s10766-020-00675-x

    Article  Google Scholar 

  120. Abbas S, Khan MA, Falcon-Morales LE, Rehman A, Saeed Y, Zareei M, Zeb A, Mohamed EM (2020) Modeling, simulation and optimization of power plant energy sustainability for IoT enabled smart cities empowered with deep extreme learning machine. IEEE Access 8:39982–39997. https://doi.org/10.1109/ACCESS.2020.2976452

    Article  Google Scholar 

  121. Zamee MA, Han D, Won D (2021) Online hour ahead load forecasting using appropriate time-delay neural network based on multiple correlation-multicollinearity analysis in IoT energy network. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3133002

    Article  Google Scholar 

  122. Han T, Muhammad K, Hussain T, Lloret J, Baik SW (2020) An efficient deep learning framework for intelligent energy management in IoT networks. IEEE Internet Things J 8(5):3170–3179. https://doi.org/10.1109/JIOT.2020.3013306

    Article  Google Scholar 

  123. Li L, Ota K, Dong M (2017) When weather matters: IoT-based electrical load forecasting for smart grid. IEEE Commun Mag 55(10):46–51. https://doi.org/10.1109/MCOM.2017.1700168

    Article  Google Scholar 

  124. Abdel-Basset M, Hawash H, Chakrabortty RK, Ryan M (2021) Energy-net: a deep learning approach for smart energy management in IoT-based smart cities. IEEE Internet Things J 8(15):12422–12435. https://doi.org/10.1109/JIOT.2021.3063677

    Article  Google Scholar 

  125. Jafarzadeh P, Farahnakian F, Paalassalo JP, Eerola O (2021) IoT-based household energy consumption prediction using machine learning. In Advances in industrial internet of things, engineering and management, pp 137–152. https://doi.org/10.1007/978-3-030-69705-1_8

  126. Samani E, Khaledian P, Aligholian A, Papalexakis E, Cun S, Nazari MH, Mohsenian-Rad H (2020) Anomaly detection in iot-based pir occupancy sensors to improve building energy efficiency. In 2020 IEEE power & energy society innovative smart grid technologies conference (ISGT), IEEE. pp 1–5. https://doi.org/10.1109/ISGT45199.2020.9087681

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Kumar Paramasivan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, R., Paramasivan, S.K. Advances in Deep Learning Techniques for Short-term Energy Load Forecasting Applications: A Review. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10155-x

Navigation