Log in

Thermo-Mechanical and Structural Performances of Automobile Disc Brakes: A Review of Numerical and Experimental Studies

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Disc brake system is one of the most critical components in a vehicle, which is always exposed to nonlinear transient thermoelastic conditions. Optimal design of a brake system to suit the heat transfer, weight and packing requirements is an ongoing challenge. Substantial researches have been carried out and are underway, in order to address the diverse issues related to thermal, mechanical and structural performances of automobile disc brakes. With the extensive application of numerical tools and techniques, the analyses involved became easier and effective. The present article provides an exhaustive review of the numerical and experimental studies reported so far, on the analysis and design of solid and ventilated disc brakes. The directions for future works are also described. The review reveals that, there is enough scope for extended research for realizing optimal design of disc brake system by truly emulating all the relevant practical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Cho C, Ahn S (2002) Transient thermoelastic analysis of disk brake using the fast fourier transform and finite element method. J Therm Stress 25(February):215–243

    Article  Google Scholar 

  2. Apte AA, Ravi H (2006) FE prediction of thermal performance and stresses in a disc brake system. In: Commercial vehicle engineering congress and exhibition. SAE Technical Paper Series 2006-01-3558

  3. McPhee AD, Johnson DA (2008) Experimental heat transfer and flow analysis of a vented brake rotor. Int J Therm Sci 47(4):458–467

    Article  Google Scholar 

  4. Kao T, Richmond JW, Moore MW (1994) The application of predictive techniques to study thermo-elastic instability of brakes. In: 12th annual brake colloquium and engineering display. SAE Technical Papers 942087

  5. Anderson AE, Knapp RA (1990) Hot spotting in automotive friction systems. Wear 135(2):319–337

    Article  Google Scholar 

  6. Hartsock DL, Fash JW (2000) Effect of pad/caliper stiffness, pad thickness, and pad length on thermoelastic instability in disk brakes. J Tribol 122(3):511

    Article  Google Scholar 

  7. Panier S, Dufrénoy P, Weichert D (2004) An experimental investigation of hot spots in railway disc brakes. Wear 256(7–8):764–773

    Article  Google Scholar 

  8. Majcherczak D, Dufrénoy P (2006) Dynamic analysis of a disc brake under frictional and thermomechanical internal loading. Arch Appl Mech 75(8–9):497–512

    Article  Google Scholar 

  9. Jung SP, Park TW, Chai JB, Chung WS (2011) Thermo-mechanical finite element analysis of hot judder phenomenon of a ventilated disc brake system. Int J Precis Eng Manuf 12(5):821–828

    Article  Google Scholar 

  10. Valvano T, Lee K (2000) An analytical method to predict thermal distortion of a brake rotor. In: SAE 2000 world congress

  11. Johnson DA, Sperandei BA, Gilbert R (2003) Analysis of the flow through a vented automotive brake rotor. J Fluids Eng 125:979

    Article  Google Scholar 

  12. Li J (2006) Thermoelastic contact problems in automotive brakes and clutches. University of Michigan, Horace H. Rackham School of Graduate Studies, Michigan

    Google Scholar 

  13. Desplanques Y, Roussette O, Degallaix G, Copin R, Berthier Y (2007) Analysis of tribological behaviour of pad-disc contact in railway braking. Part 1. Laboratory test development, compromises between actual and simulated tribological triplets. Wear 262(5–6):582–591

    Article  Google Scholar 

  14. Phan D, Kondyles D (2003) Rotor design and analysis: a technique using computational fluid dynamics (CFD) and heat transfer analysis. In: 21st annual brake colloquium and exhibition. SAE Technical Paper Series 2003-01-3303

  15. Lyons OFP, Murray DB, Torrance AA (2008) Air jet cooling of brake discs. Proc Inst Mech Eng Part C J Mech Eng Sci 222:995–1004

    Article  Google Scholar 

  16. Baron Saiz C, Ingrassia T, Nigrelli V, Ricotta V (2015) Thermal stress analysis of different full and ventilated disc brakes. Frat ed Integrita Strutt 9(34):608–621

    Google Scholar 

  17. Hecht RL, Dinwiddie RB, Wang H (1999) Effect of graphite flake morphology on the thermal diffusivity of gray cast irons used for automotive brake discs. J Mater Sci 34(19):4775–4781

    Article  Google Scholar 

  18. Kinkaid NM, O’Reilly OM, Papadopoulos P (2003) Automotive disc brake squeal. J Sound Vib 267(1):105–166

    Article  Google Scholar 

  19. Jacobsson H (2003) Aspects of disc brake judder. Proc Inst Mech Eng Part D J Automob Eng 217(6):419–430

    Article  Google Scholar 

  20. Berger E (2002) Friction modeling for dynamic system simulation. Appl Mech Rev 55(6):535–577

    Article  Google Scholar 

  21. Wu Y, Wei Y, Liu Y, Duan Z, Wang L (2017) 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials. Appl Therm Eng 115:455–462

    Article  Google Scholar 

  22. Belhocine A, Omar WZW (2017) Predictive modeling and simulation of the structural contact problems between the brake pads and rotor in frictional sliding contact. Int J Interact Des Manuf 12(1):63–80

    Article  Google Scholar 

  23. Musial M, Dufrénoy P, Charley J, Majcherczak D, Benseddiq N, Weichert D, Seidermann J (1998) Dynamique des freins à disque ferroviaires—application aux points chauds et bruits de freinage. In: JEF 98:81–92

  24. Dufrénoy P, Basket SS, Weichert D (1998) Study on hot spots in the brakes to railway disc. Eur Brake Days 245–257

  25. Evtushenko OO, Ivanyk EH, Horbachova NV (2000) Analytic methods for thermal calculation of brakes (review). Mater Sci 36(6):857–862

    Article  Google Scholar 

  26. Ghadimi B, Kowsary F, Khorami M (2013) Thermal analysis of locomotive wheel-mounted brake disc. Appl Therm Eng 51(1–2):948–952

    Article  Google Scholar 

  27. Khairnar HP, Phalle VM, Mantha SS (2016) Comparative frictional analysis of automobile drum and disc brakes. Tribol Ind 38(1):11–23

    Google Scholar 

  28. Kao TK, Richmond JW, Douarre A (2000) Brake disc hot spotting and thermal judder: an experimental and finite element study. Int J Veh Des 23(3–4):276–296

    Article  Google Scholar 

  29. Panier S, Dufrénoy P, Weichert D (2001) Macroscopic hotspots occurrence in frictional organs. In: Proceedings of the thermal stresses

  30. Yenerer H, Bakır M, Özmen B (2016) Detailed strength analyses of drum brakes used in light and heavy duty trucks. In: 8. Otomotiv Teknolojileri Kongresi. pp 1120–1125

  31. Chen F (2009) Automotive disk brake squeal: an overview. Int J Veh Des 51(1–2):39–72

    Article  Google Scholar 

  32. Rahim AbuBakar A, Ouyang H (2006) Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal. Int J Veh Noise Vib 2(2):143–155

    Article  Google Scholar 

  33. Söderberg A, Andersson S (2009) Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software. Wear 267(12):2243–2251

    Article  Google Scholar 

  34. Yang S, Gibson R (1997) Brake vibration and noise: reviews, comments, and proposals. Int J Mater Prod Technol 12(4–6):496–513

    Google Scholar 

  35. Ouyang H, Nack W, Yuan Y, Chen F (2005) Numerical analysis of automotive disc brake squeal: a review. Int J Veh Noise Vib 1(3/4):207–231

    Article  Google Scholar 

  36. Chen F (2007) Disc brake squeal: an overview. SAE Technical Paper Series 2007-01-0587

  37. Yevtushenko AA, Grzes P (2010) The FEM-modeling of the frictional heating phenomenon in the pad/disc tribosystem (a review). Numer Heat Transf Part A Appl 58(3):207–226

    Article  Google Scholar 

  38. Adebis AA, Maleque MA, Rahman MM (2011) Metal matrix composite brake rotor: historical development and product life cycle analysis. Int J Automot Mech Eng 4(December):471–480

    Article  Google Scholar 

  39. Adamowicz A, Grzes P (2013) Finite element analysis of thermal stresses in a pad-disc brake system (a review). Acta Mech Autom 7(4):191–195

    Google Scholar 

  40. Yevtushenko AA, Grzes P, Adamowicz A (2015) Numerical analysis of thermal stresses in disk brakes and clutches (a review). Numer Heat Transf Part A Appl 67(2):170–188

    Article  Google Scholar 

  41. Singh M, Baghel A, Raj J (2016) Study on the analysis and optimization of brake disc: a review. Int J Eng Manag Res 6(6):1–7

    Google Scholar 

  42. Shinde NB, Borkar BR (2015) Literature review on fem analysis of disc brake system. Int J Eng Comput Sci 4(2):10554–10558

    Google Scholar 

  43. Nathi GM, Charyulu TN, Gowtham K, Reddy PS (2012) Coupled structural/thermal analysis of disc brake. Int J Res Eng Technol 1(4):539–553

    Article  Google Scholar 

  44. Belhocine A (2017) FE prediction of thermal performance and stresses in an automotive disc brake system. Int J Adv Manuf Technol 89(9–12):3563–3578

    Article  Google Scholar 

  45. Xusheng HJGCTX, **ezhao LIN (2008) Numerical modeling and analysis of the thermal-structure coupling of the disc brake. Chin J Mech Eng 2:26

    Google Scholar 

  46. Belhocine A, Bouchetara M (2013) Thermomechanical stress analysis of vehicles gray cast brake. J Serb Soc Comput Mech 7(1):17–27

    Google Scholar 

  47. Belhocine A, Bouchetara M (2012) Thermomechanical modelling of dry contacts in automotive disc brake. Int J Therm Sci 60:161–170

    Article  Google Scholar 

  48. Belhocine A, Bouchetara M (2012) Simulation of fully coupled thermomechanical analysis of disc brake rotor. WSEAS Trans Appl Theor Mech 7(3):169–181

    Google Scholar 

  49. Yevtushenko AA, Kuciej M, Yevtushenko O (2011) Three-element model of frictional heating during braking with contact thermal resistance and time-dependent pressure. Int J Therm Sci 50(6):1116–1124

    Article  MATH  Google Scholar 

  50. Choi JH, Lee I (2004) Finite element analysis of transient thermoelastic behaviors in disk brakes. Wear 257(1–2):47–58

    Article  Google Scholar 

  51. Belhocine A, Omar WZW (2017) Three-dimensional finite element modeling and analysis of the mechanical behavior of dry contact slip** between the disc and the brake pads. Int J Adv Manuf Technol 88(1–4):1035–1051

    Article  Google Scholar 

  52. Ali B, Ghazaly NM (2013) Thermal modeling of disc brake rotor in frictional contact. J Multiscale Model 5(3):1350013

    Article  Google Scholar 

  53. Belhocine A, Bouchetara M (2013) Temperature and thermal stresses of vehicles gray cast brake. J Appl Res Technol 11(5):674–682

    Article  Google Scholar 

  54. Bagnoli F, Dolce F, Bernabei M (2009) Thermal fatigue cracks of fire fighting vehicles gray iron brake discs. Eng Fail Anal 16(1):152–163

    Article  Google Scholar 

  55. Kennedy FE, Ling FF (1974) A thermal, thermoelastic, and wear simulation of a high-energy sliding contact problem. J Lubr Technol 96(3):497–505

    Article  Google Scholar 

  56. Rao VTVSR, Ramasubramanian H, Seetharamu KN (1989) Analysis of temperature field in brake disc for fade assessment. Warme- und Stoffiibertragung 24(1):9–17

    Article  Google Scholar 

  57. Zagrodzki P (1985) Numerical analysis of temperature fields and thermal stresses in the friction discs of a multidisc wet clutch. Wear 101(3):255–271

    Article  Google Scholar 

  58. Zagrodzki P (1990) Analysis of thermomechanical phenomena in multidisc clutches and brakes. Wear 140(2):291–308

    Article  Google Scholar 

  59. Day AJ, Tirovic M, Newcomb TP (1991) Thermal effects and pressure distributions in brakes. Proc Inst Mech Eng Part D J Automob Eng 205:199–205

    Article  Google Scholar 

  60. Dufrénoy P, Weichert D (1995) Prediction of railway disc brake temperatures taking the bearing surface variations into account. Arch Proc Inst Mech Eng Part F J Rail Rapid Transit 1989–1996 (vols 203–210) 209(26):67–76

    Google Scholar 

  61. Hohmann C, Schiffner K, Oerter K, Reese H (1999) Contact analysis for drum brakes and disk brakes using ADINA. Comput Struct 72(1):185–198

    Article  MATH  Google Scholar 

  62. Voller GP, Tirovic M, Morris R, Gibbens P (2005) Analysis of automotive disc brake cooling characteristics. Proc Inst Mech Eng Part D J Automob Eng 217(8):657–666

    Article  Google Scholar 

  63. Choi J-H, Lee I (2003) Transient thermoelastic analysis of disk brakes in frictional contact. J Therm Stress 26(3):223–244

    Article  Google Scholar 

  64. Qi HS, Day AJ (2007) Investigation of disc/pad interface temperatures in friction braking. Wear 262:505–513

    Article  Google Scholar 

  65. Qi HS, Day AJ, Kuan KH, Forsala GF (2004) A contribution towards understanding brake interface temperatures. In: A. Proceedings of I. Mech. E., International Conference-Braking. pp 251–260

  66. Cho H, Cho C, Kim C-B (2007) Thermal and mechanical performance analysis in accordance with disk stiffness changes in automotive disk brake. In: 14th Asia Pacific automotive engineering conference. SAE Technical Paper Series 2007-01-3661

  67. Cho H-J, Cho C-D (2008) A study of thermal and mechanical behaviour for the optimal design of automotive disc brakes. Proc Inst Mech Eng Part D J Automob Eng 222(6):895–915

    Article  Google Scholar 

  68. Söderberg A, Sellgren U, Andersson S (2008) Using finite element analysis to predict the brake pressure needed for effective rotor cleaning in disc brakes. SAE Brake Colloq., SAE 2008-01-2565, 2008

  69. Hwang P, Wu X, Jeon YB (2009) Thermal-mechanical coupled simulation of a solid brake disc in repeated braking cycles. Proc Inst Mech Eng Part J J Eng Tribol 223:1041–1048

    Article  Google Scholar 

  70. Ouyang H, Abu-Bakar AR, Li L (2009) A combined analysis of heat conduction, contact pressure and transient vibration of a disk brake. Int J Veh Des 51(1–2):190–206

    Article  Google Scholar 

  71. Kuciej M, Grzes P (2011) The comparable analysis of temperature distributions assessment in disc brake obtained using analytical method and Fe model. J Kones Powertrain Transp 18(2):235–250

    Google Scholar 

  72. Yevtushenko A, Kuciej M (2014) One-dimensional analytical models of frictional heating during braking. Encyclopedia of thermal stresses. Springer, Netherlands, pp 3445–3452

    Google Scholar 

  73. Yevtushenko AA, Adamowicz A, Grzes P (2013) Three-dimensional FE model for the calculation of temperature of a disc brake at temperature-dependent coefficients of friction. Int Commun Heat Mass Transf 42:18–24

    Article  Google Scholar 

  74. Yevtushenko AA, Grzes P (2012) Axisymmetric finite element model for the calculation of temperature at braking for thermosensitive materials of a pad and a disc. Numer Heat Transf Part A Appl 62(3):211–230

    Article  Google Scholar 

  75. Yevtushenko AA, Kuciej M (2010) Influence of the convective cooling and the thermal resistance on the temperature of the pad/disc tribosystem. Int Commun Heat Mass Transf 37(4):337–342

    Article  Google Scholar 

  76. Yevtushenko AA, Kuciej M, Yevtushenko OO (2010) Influence of the pressure fluctuations on the temperature in pad/disc tribosystem. Int Commun Heat Mass Transf 37(8):978–983

    Article  MATH  Google Scholar 

  77. Yevtushenko AA, Grzes P (2014) Mutual influence of the velocity and temperature in the axisymmetric FE model of a disc brake. Int Commun Heat Mass Transf 57:341–346

    Article  Google Scholar 

  78. Yevtushenko AA, Grzes P (2016) Mutual influence of the sliding velocity and temperature in frictional heating of the thermally nonlinear disc brake. Int J Therm Sci 102:254–262

    Article  Google Scholar 

  79. Yevtushenko AA, Grzes P (2012) Axisymmetric FEA of temperature in a pad/disc brake system at temperature-dependent coefficients of friction and wear. Int Commun Heat Mass Transf 39(8):1045–1053

    Article  Google Scholar 

  80. Yevtushenko AA, Kuciej M (2009) Frictional heating during braking in a three-element tribosystem. Int J Heat Mass Transf 52(13–14):2942–2948

    Article  MATH  Google Scholar 

  81. Yevtushenko AA, Kuciej M, Yevtushenko O (2013) The boundary conditions on the sliding surface in one-dimensional transient heat problem of friction. Int J Heat Mass Transf 59(1):1–8

    Article  MATH  Google Scholar 

  82. Yevtushenko AA, Kuciej M (2012) One-dimensional thermal problem of friction during braking: the history of development and actual state. Int J Heat Mass Transf 55(15–16):4148–4153

    Article  Google Scholar 

  83. Yevtushenko AA, Kuciej M, Yevtushenko O (2010) The contact heat transfer during frictional heating in a three-element tribosystem. Int J Heat Mass Transf 53(13–14):2740–2749

    Article  MATH  Google Scholar 

  84. Bakar ARA, Ouyang H, Khai LC, Abdullah MS (2010) Thermal analysis of a disc brake model considering a real brake pad surface and wear. Int J Veh Struct Syst 2(1):20–27

    Google Scholar 

  85. Shahzamanian MM, Sahari BB, Bayat M, Ismarrubie ZN, Mustapha F (2010) Transient and thermal contact analysis for the elastic behavior of functionally graded brake disks due to mechanical and thermal loads. Mater Des 31(10):4655–4665

    Article  Google Scholar 

  86. Singh OP, Mohan S, Venkata Mangaraju K, Jayamathy M, Babu R (2010) Thermal seizures in automotive drum brakes. Eng Fail Anal 17(5):1155–1172

    Article  Google Scholar 

  87. Babukanth G, Teja MV (2012) Transient analysis of disk brake by using ansys software. Int J Mech Ind Eng 2(1):21–25

    Google Scholar 

  88. Chang L (2003) Finite element simulation of thermo-elastic coupling characteristics of automotive drum brake. J Mech Strength 4:11

    Google Scholar 

  89. Xun M, Jian Q (2004) Thermal-structural coupling analysis of brake drum. J Hubei Automot Ind Inst 18(3):5–9

    Google Scholar 

  90. Li L, Song J, Li Y, Guo Z (2005) Study on fast finite element simulation model of thermal analysis of vehicle brake. Acta Simul Syst Sin 12:9

    Google Scholar 

  91. Zhao H, Zhang H, Tang X, Lin J, Cai Z (2005) Thermal FEM analysis of passenger railway car brake discs. J Tsinghua Univ Sci Technol 45(5):589–592

    Google Scholar 

  92. Gao C, Huang J, Lin X, Tang X (2006) Research status on heat dynamics of friction and wear for disc-pad braking systems. Chin J Constr Mach 1:22

    Google Scholar 

  93. Li J, Lin H, Li H (2006) Simulation analysis on the alloy-forge steel brake disc temperature field for a high-speed train. J China Railw Soc 4:8

    Google Scholar 

  94. Kim H, Lee S, Han D, Han G (2008) Thermal-structural coupled field analysis of the circumferential pressing type brake disc. Trans Kor Soc Automot Eng 16(4):69–74

    Google Scholar 

  95. Chang LZQ (2013) Finite element simulation of thermo-elastic coupling characteristics of automotive drum brake. J Mech Strength 4(11):1–3

    Google Scholar 

  96. Sarkar C, Hirani H (2015) Transient thermo elastic analysis of disk brake. Int J Curr Eng Technol 5(1):413–418

    Google Scholar 

  97. Zafaruddin F, Dolas DR (2016) Transient structural analysis of automotive disc brake pad. Imp J Interdiscip Res 2(12):767–771

    Google Scholar 

  98. Peszynska-Bialczyk K, Anderson KB, Szymanski T, Krkoska M, Filip P (2007) Thermal analysis of bulk carbon-carbon composite and friction products derived from it during simulated aircraft braking. Carbon N Y 45(3):524–530

    Article  Google Scholar 

  99. Maleque MA, Adebisi AA, Shah QH (2012) Energy and cost analysis of weight reduction using composite brake rotor. Int J Veh Struct Syst 4(2):69–73

    Google Scholar 

  100. Blouin VY, Oschwald M, Hu Y, Fadel GM (2005) Design of functionally graded structures for enhanced thermal behavior. In: ASME 2005 international design engineering technical conferences and computers and information in engineering conference. pp 835–843

  101. Sonn BIYHW, Kim CG, Hong CS (1995) Transient thermoelastic analysis of composite brake disks. J Reinf Platsics Compos 14:1337–1361

    Article  Google Scholar 

  102. Sonn H-W, Kim C-G, Hong C-S, Yoon B-I (1996) Transient thermoelastic analysis of composite brake disks. J Thermophys Heat Transf 10(1):69–75

    Article  Google Scholar 

  103. Thilak VMM, Krishnaraj R, Sakthivel M, Kanthavel K et al (2011) Transient thermal and structural analysis of the rotor disc of disc brake. Int J Sci Eng Res 2(8):1–4

    Google Scholar 

  104. Yevtushenko AA, Kuciej M (2009) Temperature in a frictionally-heated ceramic-metal patch and cast iron disc during braking. Numer Heat Transf Part A Appl 56(2):97–108

    Article  Google Scholar 

  105. Thilak VMM (2012) Transient analysis of rotor disc of disc brake using ansys. Int J Manag IT Eng 2(6):502–514

    Google Scholar 

  106. Blouin VY, Oschwald M, Hu Y, Fadel GM (2005) Design of functionally graded structures for enhanced thermal behavior. In: ASME 2005 international design engineering technical conferences computers and information in engineering conference and computers and information in engineering conference. pp 1–9

  107. Milošević MS, Stamenković DS, Milojević AP, Tomić MM (2013) Modeling thermal effects in braking systems of railway vehicles. Therm Sci 16(SUPPL.2):S515–S526

    Google Scholar 

  108. Sowjanya K, Suresh S (2013) Structural analysis of disc brake rotor. Int J Comput Trends Technol 4(7):2295–2298

    Google Scholar 

  109. Alnaqi A, Barton D, Brooks P (2013) Thermal performance of monolithic and coated disc brakes using abaqus and matlab software. In: 2013 SIMULIA community conference. pp 1–16

  110. Kumar A, Sabarish R (2014) Structural and thermal analysis of brake drum. Middle East J Sci Res 20(6):715–719

    Google Scholar 

  111. Balasubramanyam N (2014) Design and analysis of disc brake rotor for a two wheeler. Int J Mech Ind Technol 1(1):7–12

    Google Scholar 

  112. Tiwari AK, Tiwari AK, Yadav P, Yadav HS, Lal SB (2014) Finite element analysis of disc brake by ANSYS workbench. Int J Res Eng Adv Technol 2(2):1–6

    Google Scholar 

  113. Kulkarni A, Hegade K, Karale O (2016) Coupled thermal and structural analysis of brake disc rotor manufactured from aluminum metal matrix composite (AMMC) reinforced with silicon carbide. Imp J Interdiscip Res 2(6):1188–1194

    Google Scholar 

  114. Knothe K, Liebelt S (1995) Determination of temperatures for sliding contact with applications for wheel-rail systems. Wear 189(1–2):91–99

    Article  Google Scholar 

  115. Dufrénoy GD, Bodovillé PG (2002) Damage mechanisms and thermomechanical loading of brake discs. Eur Struct Integr Soc 29:167–176

    Article  Google Scholar 

  116. Dufrénoy P, Bodovillé G, Degallaix G (2002) Damage mechanisms and thermomechanical loading of brake discs. Temp Interact 29(C):167–176

    Google Scholar 

  117. Joo S, Kwon Y, Kim H (2009) A study on the fatigue damage of a railway disc brake surface due to thermal stress during braking using FEM analysis. J Kor Soc Railw 12(2):212–218

    Google Scholar 

  118. Dufrénoy P, Weichert D (2003) A thermomechanical model for the analysis of disc brake fracture mechanisms. J Therm Stress 26(8):815–828

    Article  Google Scholar 

  119. Gao CH, Huang JM, Lin XZ, Tang XS (2007) Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling. J Tribol 129(3):536

    Article  Google Scholar 

  120. Yevtushenko A, Kuciej M (2010) Temperature and thermal stresses in a pad/disc during braking. Appl Therm Eng 30(4):354–359

    Article  MATH  Google Scholar 

  121. Aleksendrić D, Duboka Č, Gotowicki Pier Francesco VN, Virzì Mariotti G (2006) Braking procedure analysis of a pegs-wing ventilated disk brake rotor. Int J Veh Syst Model Test 1(4):233–252

    Google Scholar 

  122. Gotowicki PF, Nigrelli V, Mariotti GV, Aleksendric D, Duboka C (2005) Numerical and experimental analysis of a pegs-wing ventilated disk brake rotor with pads and cylinders. In: 10th EAEC European automotive congress. pp 1–15

  123. Okamura T, Yumoto H (2006) Fundamental study on thermal behavior of brake discs. In: 24th annual brake colloquium and exhibition. SAE Technical Paper Series 2006-01-3203

  124. Talati SJF (2008) Investigation of heat transfer phenomena in a ventilated disk brake rotor with straight radial rounded vanes. J Appl Sci 8(20):3583–3592

    Article  Google Scholar 

  125. Hassan MZ, Brooks PC, Barton DC (2008) Thermo-mechanical contact analysis of car disc brake squeal. J Passeng Cars Mech Syst 1(1):1230–1239

    Article  Google Scholar 

  126. Hassan MZ, Brooks PC, Barton DC (2009) A predictive tool to evaluate disk brake squeal using a fully coupled thermo-mechanical finite element model. Int J Veh Des 51(1/2):124–142

    Article  Google Scholar 

  127. Bayas E (2012) Coupled field analysis of disc brake rotor. Int J Adv Res Sci Eng Technol 2(1):6–9

    Google Scholar 

  128. Damaziak K (2013) Brake system studies using numerical methods. Eksploat I Niezawodn Maint Reliab 15(4):337–342

    Google Scholar 

  129. Yang X, Wang JX, Fan JC (2009) Simulation study of temperature field and stress field of disc brake based on direct coupling method. Mater Sci Forum 628–629:287–292

    Article  Google Scholar 

  130. Chung WS, Jung SP, Park TW (2010) Numerical analysis method to estimate thermal deformation of a ventilated disc for automotives. J Mech Sci Technol 24(11):2189–2195

    Article  Google Scholar 

  131. Zhang L, Meng D, Yu Z (2010) Theoretical modeling and FEM analysis of the thermo-mechanical dynamics of ventilated disc brakes. In: SAE 2010 world congress and exhibition. SAE Technical Paper 2010-01-0075

  132. Rashid A, Strömberg N (2013) Thermomechanical simulation of wear and hot bands in a disc brake by adopting an eulerian approach. In: Eurobrake

  133. Rashid A (2012) Simulation of thermal stresses in a disc brake. Linkö** University, Linkö**

    Google Scholar 

  134. Kang SS, Cho SK (2012) Thermal deformation and stress analysis of disk brakes by finite element method. J Mech Sci Technol 26(7):2133–2137

    Article  Google Scholar 

  135. Jian Z, Changgao X (2012) Research of the transient temperature field and friction properties on disc brakes. In: 2nd international conference on computer and information application (ICCIA 2012), Iccia. pp 201–204

  136. Duzgun M (2012) Investigation of thermo-structural behaviors of different ventilation applications on brake discs. J Mech Sci Technol 26(1):235–240

    Article  Google Scholar 

  137. Jiang L, Jiang YL, Yu L, Su N, Ding YD (2012) Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling. Trans Nonferrous Met Soc China (English Ed) 22(11):2783–2791

    Article  Google Scholar 

  138. Pevec GBM, Potrc I, Vranesevic D (2012) Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation. Int J Automot Technol 13(5):725–733

    Article  Google Scholar 

  139. Jung S, Kim Y, Park T (2012) A study on thermal characteristic analysis and shape optimization of a ventilated disc. Int J Precis Eng Manuf 13(1):57–63

    Article  Google Scholar 

  140. Udayakumar RPR (2013) Computer aided design and analysis of disc brake rotors for passenger cars. In: 2013 International conference on computer applications technology (ICCAT). IEEE, pp 1–5

  141. Reddy VC, Reddy MG, Gowd GH (2013) Modeling and analysis of FSAE car disc brake using FEM. Int J Emerg Technol Adv Eng 3(9):383–389

    Google Scholar 

  142. Manjunath DSPM (2013) Structural and thermal analysis of rotor disc of disc brake. Int J Innov Res Sci Eng Technol 2(12):7741–7749

    Google Scholar 

  143. Kumar GR, Thriveni S, Reddy MR, Gowd GH (2014) Design analysis and optimization of an automotive disc brake. Int J Adv Eng Res Sci 1(3):24–29

    Google Scholar 

  144. Song KHLBC (2009) Structural optimization of a circumferential friction disk brake with consideration of thermoelastic instability. Int J Automot Technol 10(3):321–328

    Article  MathSciNet  Google Scholar 

  145. Abhang SR, Bhaskar DP (2014) Design and analysis of disc brake. Int J Eng Trends Technol 8(4):165–167

    Article  Google Scholar 

  146. Hwang P, Wu X, Cho S-W, Jeon Y-B (2007) Temperature and coning analysis of ventilated brake disc based on finite element technique. In: 14th Asia Pacific automotive engineering conference, SAE Technical Paper 2007-01-3670

  147. Rajagopal TKR, Ramachandran R, James M, Gatlewar SC (2014) Numerical investigation of fluid flow and heat transfer characteristics on the aerodynamics of ventilated disc brake rotor using CFD. Therm Sci 18(2):667–675

    Article  Google Scholar 

  148. Umale SR, Varma D, Engineering M, Malkapur MS (2016) Analysis and optimization of disc brake rotor. Int Res J Eng Technol 3(11):872–876

    Google Scholar 

  149. Jaiswal R et al (2016) Structural and thermal analysis of disc brake using solidworks and ANSYS. Int J Mech Eng Technol 7(1):67–77

    Google Scholar 

  150. Shaik AFB, Srinivas CL (2012) Structural and thermal analysis of disc brake with and without crossdrilled rotar of race car. Int J Adv Eng Res Stud IV:39–43

    Google Scholar 

  151. Subramanian PM, Oza D (2015) Strength analysis of a ventilated brake disc-hub assembly for a multiutility vehicle. Int Res J Eng Technol 2(2):726–730

    Google Scholar 

  152. Alam SE, Vidhyadhar Y, Sharma P, Jain A (2015) Thermal analysis of disc brakes rotor: a comparative report. J Inf Sci Comput Technol 3(2):196–200

    Google Scholar 

  153. Shinde ENB, Borkar PBR (2015) C.A.D. & F.E.M. Analysis of disc brake system. Int J Eng Comput Sci 4(3):10697–10706

    Google Scholar 

  154. Jaenudin JJ, Tauviqirrahman M (2017) Thermal analysis of disc brakes using finite element method. In: In AIP conference proceedings, edited by Budi Kristiawan, Miftahul Anwar, Agung Tri Wijayanta, Syamsul Hadi, Dominicus Danardono, Dody Ariawan, Joko Triyono, and Budi Santoso, vol 1788(1). p 30028

  155. Nong XD, Jiang YL, Fang M, Yu L, Liu CY (2017) Numerical analysis of novel SiC3D/Al alloy co-continuous composites ventilated brake disc. Int J Heat Mass Transf 108:1374–1382

    Article  Google Scholar 

  156. Belhocine A (2014) Finite element analysis of automotive disc brake and pad in frictional model contact. Int J Adv Des Manuf Technol 7(4):27–42

    Google Scholar 

  157. Belhocine A, Bouchetara M (2012) Thermal behavior of full and ventilated disc brakes of vehicles. J Mech Sci Technol 26(11):3643–3652

    Article  Google Scholar 

  158. Belhocine A, Abu Bakar MBAR (2014) Numerical modeling of disc brake system in frictional contact. Tribol Ind 36(1):49–66

    Google Scholar 

  159. Bouchetara M, Belhocine A, Nouby M, Barton DC, Bakar A (2014) Thermal analysis of ventilated and full disc brake rotors with frictional heat generation. Appl Comput Mech 8:5–24

    Google Scholar 

  160. Belhocine A, Omar WZW (2016) A numerical parametric study of mechanical behavior of dry contact slip** on the disc-pads interface. Alex Eng J 55(2):1127–1141

    Article  Google Scholar 

  161. Belhocine A, Omar WZW (2016) Three-dimensional finite element modeling and analysis of the mechanical behavior of dry contact slip** between the disc and the brake pads. Int J Adv Manuf Technol 4(2):34–62

    Google Scholar 

  162. Belhocine A, Ghazali NM, Abdullah OI (2014) Dry contact and coupled thermomechanical analyses of brake disc-pad using finite element simulation. Int J Veh Struct Syst 6(3):64–70

    Google Scholar 

  163. Belhocine A, Bouchetara M, Ghazali NM, Abdullah OI, Methodology MD, Info A (2015) Structural and contact analysis of a 3-dimensional disc-pad model with and without thermal effects. Turk J Eng Sci Technol 4(2014):188–202

    Google Scholar 

  164. Belhocine A, Bouchetara M (2013) Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model. Ain Shams Eng J 4(3):475–483

    Article  Google Scholar 

  165. Belhocine A, Bouchetara M (2013) Thermal-mechanical coupled analysis of a brake disc rotor. Elixir Publ 55(A):13244–13250

    Google Scholar 

  166. Belhocine A, Bouchetara M (2013) Thermomechanical analysis of vehicles gray iron brake discs. Int J Cloth Sci Technol 25(4):284–299

    Article  Google Scholar 

  167. Belhocine A, Bouchetara M (2013) Thermo-mechanical stress analysis of disc brake rotor. Int J Veh Struct Syst 5(1):15–22

    Google Scholar 

  168. Belhocine A, Bouchetara M (2012) Thermal analysis of a solid brake disc. Appl Therm Eng 32(1):59–67

    Article  Google Scholar 

  169. Belhocine A, Abu Bakar AR, Bouchetara M (2016) Thermal and structural analysis of disc brake assembly during single stop braking event. Aust J Mech Eng 14(1):26–38

    Article  Google Scholar 

  170. Belhocine A (2016) Effects of young’ s modulus on disc brake squeal using finite element analysis. Int J Acoust Vib 21(3):292–300

    Google Scholar 

  171. Belhocine A, Bouchetara M, Bakar ARA, Nouby M (2014) Modeling of thermal contact problem of disc brake system with frictional heat generation. World J Eng 11(4):373–390

    Article  Google Scholar 

  172. Ali B, Mostefa B (2013) Thermomechanical modelling of disc brake contact phenomena. FME Trans 41(1):59–65

    Google Scholar 

  173. Belhocine A, Bakar ARA, Abdullah OI (2014) Structural and contact analysis of disc brake assembly during single stop braking event. Int J Automot Eng Technol 3(1):22–31

    Article  Google Scholar 

  174. Ghadimi B, Sajedi R, Kowsary F (2013) 3D investigation of thermal stresses in a locomotive ventilated brake disc based on a conjugate thermo-fluid coupling boundary conditions. Int Commun Heat Mass Transf 49:104–109

    Article  Google Scholar 

  175. D’Cruz AH (1989) Surface crack initiation in ventilated disc brakes under transient thermal loading. Proc Instr Mech Eng C 328

  176. Boniardi M, D’Errico F, Tagliabue C, Gotti G, Perricone G (2006) Failure analysis of a motorcycle brake disc. Eng Fail Anal 13(6):933–945

    Article  Google Scholar 

  177. Akop MZ, Kien R, Mansor MR, Rosli MAM (2009) Thermal stress analysis of heavy truck brake disc rotor. J Mech Eng Technol 1(1):43–52

    Google Scholar 

  178. Zhang L, Yang Q, Weichert D, Tan N (2009) Simulation and analysis of thermal fatigue based on imperfection model of brake discs. PAMM Proc Appl Math Mech 9(1):533–534

    Article  Google Scholar 

  179. Collignon M, Cristol AL, Dufrénoy P, Desplanques Y, Balloy D (2013) Failure of truck brake discs: a coupled numerical-experimental approach to identifying critical thermomechanical loadings. Tribol Int 59:114–120

    Article  Google Scholar 

  180. Yang Z, Han J, Li W, Li Z, Pan L, Shi X (2013) Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs. Eng Fail Anal 34:121–128

    Article  Google Scholar 

  181. Ting-Long H, Peterson MB, Ling FF (1974) Effect of frictional heating on brake materials. Wear 30(1):73–91

    Article  Google Scholar 

  182. Santini J, Kennedy FE Jr (1974) An experimental investigation of surface temperatures and wear in disk brakes. In: American society of lubrication engineers and american society of mechanical engineers, joint lubrication conference, vol 31. pp. 402–404, 413–417

  183. Parker PRMRC (1947) The measurement of the temperature of sliding surfaces, with particular reference to railway brake blocks. Proc Inst Mech Eng 156:209–229

    Article  Google Scholar 

  184. Barber J (1967) The influence of thermal expansion on the friction and wear process. Wear 10(2):155–159

    Article  Google Scholar 

  185. Barber J (1969) Thermoelastic instabilities in the sliding of comforming solids. Proc R Soc Lond A Math Phys Eng Sci 312(1510):381–394

    Article  Google Scholar 

  186. Lee K, Barber JR (1994) An experimental investigation of frictionally-excited thermoelastic instability in automotive disk brakes under a drag brake application. J Tribol 116(3):409–414

    Article  Google Scholar 

  187. Eriksson M, Bergman F, Jacobson S (2002) On the nature of tribological contact in automotive brakes. Wear 252(1–2):26–36

    Article  Google Scholar 

  188. Mackin TJ et al (2002) Thermal cracking in disc brakes. Eng Fail Anal 9(1):63–76

    Article  Google Scholar 

  189. Natarajan N, Vijayarangan S, Rajendran I (2007) Fabrication, testing and thermal analysis of metal matrix composite brake drum. Int J Veh Des 44(3/4):339–359

    Article  Google Scholar 

  190. Limpert R (1975) Cooling analysis of disc brake rotors. In: Truck meeting. SAE Tehincal Papers 751014

  191. Pevec M, Oder G, Potrc I, Sraml M (2014) Elevated temperature low cycle fatigue of grey cast iron used for automotive brake discs. Eng Fail Anal 42:221–230

    Article  Google Scholar 

  192. Li Z, Han J, Yang Z, Pan L (2014) The effect of braking energy on the fatigue crack propagation in railway brake discs. Eng Fail Anal 44:272–284

    Article  Google Scholar 

  193. Li Z, Han J, Li W, Pan L (2014) Low cycle fatigue behavior of Cr-Mo-V low alloy steel used for railway brake discs. Mater Des 56:146–157

    Article  Google Scholar 

  194. Cristol-Bulthé AL, Desplanques Y, Degallaix G (2007) Coupling between friction physical mechanisms and transient thermal phenomena involved in pad-disc contact during railway braking. Wear 263(7–12):1230–1242

    Article  Google Scholar 

  195. Majcherczak D, Dufrenoy P, Berthier Y (2007) Tribological, thermal and mechanical coupling aspects of the dry sliding contact. Tribol Int 40(5):834–843

    Article  Google Scholar 

  196. Alnaqi AA, Barton DC, Brooks PC (2015) Reduced scale thermal characterization of automotive disc brake. Appl Therm Eng 75:658–668

    Article  Google Scholar 

  197. Afzal A, Ansari Z, Faizabadi A, Ramis M (2017) Parallelization strategies for computational fluid dynamics software: state of the art review. Arch Comput Methods Eng 24(2):337–363

    Article  MathSciNet  MATH  Google Scholar 

  198. Pinto R, Afzal A, D’Souza L, Ansari Z, Mohammed Samee AD (2017) Computational fluid dynamics in turbomachinery: a review of state of the art. Arch Comput Methods Eng 24(3):467–479

    Article  MathSciNet  MATH  Google Scholar 

  199. Pinto RN, Afzal A, Navaneeth IM, Ramis MK (2016) Computational analysis of flow in turbines. In: International conference on inventive computation technologies (ICICT). pp (3) 1–5

  200. Ishak MR, Abu Bakar AR, Belhocine A, Taib JM, Omar WZW (2016) Brake torque analysis of fully mechanical parking brake system: theoretical and experimental approach. Meas J Int Meas Confed 94:487–497

    Article  Google Scholar 

  201. Ghadimi B, Kowsary F, Khorami M (2015) Heat flux on-line estimation in a locomotive brake disc using artificial neural networks. Int J Therm Sci 90:203–213

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Dr. Abd. Rahim bin Abu Bakar, Senior lecturer, Faculty of Engineering, Universiti Teknologi Malaysia for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Afzal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Abdul Mujeebu, M. Thermo-Mechanical and Structural Performances of Automobile Disc Brakes: A Review of Numerical and Experimental Studies. Arch Computat Methods Eng 26, 1489–1513 (2019). https://doi.org/10.1007/s11831-018-9279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-018-9279-y

Navigation